Monitoring Leaf Nitrogen Concentration in Wheat Based on Spectral Parameters from HJ-CCD Data with Stepwise Regression Method

Article Preview

Abstract:

Nitrogen is a crucial parameter in maintaining crop health and predicting crop yield. It is possible that leaf nitrogen concentration (LNC) was quickly and non-destructively estimated by remote sensing method. The objective of this experiment was to develop a sensitive spectral index for monitoring LNC in wheat based on HJ-CCD data. In this study, we assessed several common spectral indices based on stepwise regression methods with the determination coefficient (R2) and root mean square error (RMSE). The results indicated that compared to other spectral index, the spectral index of 1.65SIPI-1.35PSRI was the most positively related to LNC (R2 = 0.6328, p<0.01), and the model for monitoring LNC based on 1.65SIPI-1.35PSRI was with the RMSE of 0.685 g.m-2 (p<0.01), and was significantly better than the models adopting other spectral indices. In conclusion, this study confirmed the feasibility of utilizing 1.65SIPI-1.35PSRI derived from airborne remotely sensed data to monitor LNC in wheat.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 468-471)

Pages:

1521-1526

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.Filella, L. Serrano, J. Serra and J.Penuelas,Estimating wheat nitrogen status with canopy reflectance indices and discriminant analysis, Crop Sci. 35 (1995) 1400–1405.

DOI: 10.2135/cropsci1995.0011183x003500050023x

Google Scholar

[2] P.M. Hansen and J.K. Schjoerring, Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least square regression. Remote Sens.Environ. 86 (2002) 542-553.

DOI: 10.1016/s0034-4257(03)00131-7

Google Scholar

[3] K.F. Bronson, T.T. Chua, J.D. Booker, J.W. Keeling, R.J. Lascano, In-season nitrogen status sensing in irrigated cotton. II. Leaf nitrogen and biomass, Soil Sci. Soc. Am. J. 67 (2003) 1439-1448.

DOI: 10.2136/sssaj2003.1439

Google Scholar

[4] R.Gislum, E. Micklander and J.P. Nielsen, Qualification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics, Field Crops Res. 88 (2004) 269-277.

DOI: 10.1016/j.fcr.2004.01.021

Google Scholar

[5] D.E. Clay, K.I. Kim, J. Chang, S.A. Clay, K. Dalsted,Characterizing water and nitrogen stress in corn using remote sensing, Agron. J. (2006) 579-587.

DOI: 10.2134/agronj2005.0204

Google Scholar

[6] J.K. Kruse, N.E. Christians and M.H. Chaplin,Remote sensing of nitrogen stress in creeping bentgrass, Agron. J. Vol. 98 (2006)1640-1645.

DOI: 10.2134/agronj2006.0022

Google Scholar

[7] J.H. Zhang, K.Wang J.S. Bailey R.C. Wang, Predicting nitrogen status of rice using multispectral data at canopy scale,Pedosphere.16 (2006) 108-117.

DOI: 10.1016/s1002-0160(06)60032-5

Google Scholar

[8] Y. Zhu, Y. Li, W. Feng, Y.Tian, X. Yao and W. Cao, Monitoring leaf nitrogen in wheat using canopy reflectance spectra, Can. J. Plant Sci. 86 (2006)1037-1046.

DOI: 10.4141/p05-157

Google Scholar

[9] B. Mistele, U.Schmidhalter, Estimating the nitrogen nutrition index using spectral canopy reflectance measurements,Eur. J. of Agron. 29 (2010) 184-190.

DOI: 10.1016/j.eja.2008.05.007

Google Scholar

[10] J.W. Rouse, R.H. Haas, J.A. Schell, D.W. Deering, Monitoring vegetation systems in the Great Plains with ERTS, In Proc. Symp. Earth Resour.Technol. Satellite, 3rd,Vol. 1, Greenbelt, MD (1973) 309-317.

Google Scholar

[11] W.C. Bausch and H.R. Duke, Remote sensing of plant nitrogen status in corn, Trans.ASAE. 32 (1996) 1869-1875.

DOI: 10.13031/2013.27665

Google Scholar

[12] T. Lee, K.R. Reddy G.F. Sassenrath-Cole, Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration, Crop Sci. 40 (2000) 1814-1819.

DOI: 10.2135/cropsci2000.4061814x

Google Scholar

[13] F.Michael,W.Randall,H.Ronnie,T.Barry, M.Alan, Field validation of a remote sensing technique for early nitrogen application decisions in wheat,Agron.J. 95 (2003) 167-176.

Google Scholar

[14] L.H. Xue W.X. Cao W.H. Luo T.B. Dai,Y. Zhu, Monitoring leaf nitrogen status in rice with canopy spectral reflectance,Agron. J. Vol. 96 (2004)135-142.

DOI: 10.2134/agronj2004.0135

Google Scholar

[15] K.K. Jason, E.C. Nick, H.C. Michael, Remote sensing of nitrogen stress in creeping bentgrass, Agron. J. 98 (2006)1640-1645.

Google Scholar

[16] J.U.H. Eitel, D. S. Long, P. E. Gessler, E. R. Hunt, Combined spectral index to improve ground-based estimates of nitrogen status in dryland wheat, Agron. J. 100 (2008) 1694-1702.

DOI: 10.2134/agronj2007.0362

Google Scholar

[17] W. Feng, X. Yao, Y. Zhu, Y.C. Tian, W.X. Cao,Monitoring leaf nitrogen status with hyperspectral reflectance in wheat, Europ. J. Agron. 28 (2008) 394-404.

DOI: 10.1016/j.eja.2007.11.005

Google Scholar

[18] P.F. Chen, D. Haboudane, N.Tremblay, J.H. Wang, P.Vigneault ,B.G. Li, New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat,Remote Sens. Environ. 114 (2010) 1987-1997.

DOI: 10.1016/j.rse.2010.04.006

Google Scholar

[19] J.S. Schepers D.D. Francis M.T. Thompson, Simultaneous determination of total C, total N and 15N on soil and plant material.Commun,Commun. Soil Sci. Plant Anal. 20 (1989) 949-959.

DOI: 10.1080/00103628909368128

Google Scholar