[3]
Boyd SA, Lee JF, Mortland, 1988, Attenuating organic contaminant mobility by soil modification. Nature 333, 345-347.
DOI: 10.1038/333345a0
Google Scholar
[4]
Brenn U, Schwieger W, Wuttig K, 1999,Rearrangement ofcationic surfactants in magadiite, Colliod Polym. Sci. 277, 394-399.
DOI: 10.1007/s003960050398
Google Scholar
[5]
Dailey JS, Pinnavaia TJ, 1992, Silica pillared derivatives of H-magadiite, a crystalline hydrated silica, Chem. Mater. 4 ,855-863.
DOI: 10.1021/cm00022a022
Google Scholar
[6]
Endo K, Sugahara Y, Kuroda K, 1994,Formation of intercalation compounds of a layered sodium octosilicate with n-alkyltrimethylammonium ions and the application to organic derivatization, Bull. Chem. Soc. Jpn. 67,3352-3355.
DOI: 10.1246/bcsj.67.3352
Google Scholar
[7]
Eugster HP, 1967, Hydrous sodium silicates from lake magadii, kenya: pre-cursors of bedded chert. Science 157,1177-1180.
DOI: 10.1126/science.157.3793.1177
Google Scholar
[8]
Fujita I., Kuroda K, Ogawa M, 2003, Synthesis of interlamellar silylated derivatives of magadiite and the adsorption behavior for aliphatic alcohols, Chem. Mater. 15, 3134-3141.
DOI: 10.1021/cm011698y
Google Scholar
[9]
Guo Y, Wang Y, Yang Q.X., Li GD, Wang CS, Cui ZC, 2004, Preparation and characterization of magadiite grafted with an azobenzene derivative, Solid State Sci. 2, 239-258.
DOI: 10.1016/j.solidstatesciences.2004.04.006
Google Scholar
[10]
Hu N, Rusling JF, 1991, Surfactant-intercalated clay films for electrochemical catalysis, reduction of trichloroacetic acid. Anal. Chem. 63, 2163-2168.
DOI: 10.1021/ac00019a017
Google Scholar
[11]
Isoda K, Kuroda K, Ogawa M. 2000, Interlamellar grafting of y-methacryloxypropylsilyl groups on magadiite and copolymerization with methyl methacrylate, Chem. Mater. 12 ,.
DOI: 10.1021/cm0000494
Google Scholar
[12]
Kirn CS, Yates DM, Heanet PJ, 1997,The layered sodium silicate magadiite: an analog to smectite for benzene sorption from water, Clays Clay Miner. ,45, 881-885.
DOI: 10.1346/ccmn.1997.0450612
Google Scholar
[13]
Lagaly G, Beneke K, Weiss A, Magadiite and H-magadiite. I. 1975, Sodium magadiite and some of its derivatives. Am. Miner. 60, 642-649.
Google Scholar
[14]
Ogawa M, Miyoslai M., Kuroda K, 1998, Perfluoroalkylsilylation of the interlayer silanol groups of layered silicate, magadiite, Chem. Mater. 10, 3789-3837.
DOI: 10.1021/cm980660r
Google Scholar
[15]
Ogawa M., 2002, Photoisomerization of azobenzene in the interlayer space of magadiite, J. Mater. Chem. 12, 3304-3307.
DOI: 10.1039/b204031j
Google Scholar
[16]
Okutomo S, Kuroda K, Ogawa M, 1999, Preparation and characterization of silylated-magadiites, Appl. Clay Sci. 15 , 253-264.
DOI: 10.1016/s0169-1317(99)00010-1
Google Scholar
[17]
Shimojima A, Umeda N, Kuroda K, 2001,Synthesis of layered inorganic-organic nanocomposite films from mono-, di-, and trimethoxy(alkyl)silane-tetramethoxysilane systems, Chem. Mater. 13, 3610-3616.
DOI: 10.1021/cm0101125
Google Scholar
[18]
Thiesen P.H, Beneke K, Lagaly G, 2002,Silylation of a crystalline silicic acid:an MAS NMR and porosity study, J. Mater. Chem. 12, 3010-3015.
DOI: 10.1039/b204314a
Google Scholar
[19]
Wang Z,. Pinnavaia TJ, 1998, Hybrid organic-inorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer, Chem. Mater. 10, 1820-1826.
DOI: 10.1021/cm970784o
Google Scholar
[20]
Zhang Z, Saengkerdsub S, Dai S, 2003,Intersurface ion-imprinting synthesis on layered magadiite hosts, Chem. Mater. 15, 2921-2925. Capel-Sanchez MC, Barrio L, Campos-Martin J.M., Fierro J.L.G., 2004, Silylation and surface properties of chemically grafted hydrophobic silica, Colloid Interface Sci. 277, 146-153.
DOI: 10.1021/cm034162g
Google Scholar
[21]
Zhang Z, 2003 Coster LD, Der Voori P.V, Grobet PJ, Vansant EF, 1995,The role of silanosi in the modification of silica gel with aminosilanes, J. Colloid Interface Sci. 170, 71-77. Figure 2. X-ray diffraction (XRD) patterns of (a) Na-magadiite, (b) CTAB-magadiite, (c) APTS-magadiite, (d) GPS-magadiite, (e) MPS-magadiite. T2 T3 Q3 Q4 Chemical shift (δ/ppm) Fig.3a. 29Si Solid-state CP-MAS NMR spectra of APTS-magadiite (T2 represents the structure of【Si(OSi)2(OR')R】and T3 of 【Si(OSi)3OR】, peak Q3 indicating the structure【Si(OSi)3OH】 and peak Q4 of【Si(OSi)4】) Chemical shift (δ/ppm) Fig.3b. 29Si Solid-state CP-MAS NMR spectra of GPS-magadiite(T2 represents the structure of【Si(OSi)2(OR')R】and T3 of 【Si(OSi)3OR】, peak Q3 indicating the structure【Si(OSi)3OH】 and peak Q4 of【Si(OSi)4】) Fig.3c. 29Si Solid-state CP-MAS NMR spectra of MPS-magadiite(T2 represents the structure of【Si(OSi)2(OR')R】and T3 of 【Si(OSi)3OR】, peak Q3 indicating the structure 【Si(OSi)3OH】 and peak Q4 of【Si(OSi)4】)
Google Scholar