Organically and Silylation of Synthesis Nano- Clay-Magadiite

Article Preview

Abstract:

This paper is an investigation of the properties of covalently bonded magadiite/polyimide nanocomposites synthesized with magadiite and polyimide(PI). Synthesized magadiite was organically modified by n-hexadecyl trimethyl-ammonium bromide (CTAB) and then grafted by γ-aminopropyltriethoxysilane (APTS) γ-glycidoxypropyltrimethoxysilane( GPS ) or γ-methacryloxy-propyltrimethoxysilane ( MPS ). XRD confirmed the formation of the CTAB-magadiite and showed that the basal spacing increased from 1.54 to 2.46 nm. Three silylating reagents, APTS ,GPS and MPS, were reacted with the CTAB- exchanged magadiite. The subsequent formation of the organic derivatives was confirmed by XRD (X-ray diffractometer), FTIR (Fourier transform infrared spectrometer), and 29Si CP-MAS NMR (Solid-state nuclear magnetic resonance ) spectra. The copolymerization of the APTS- GPS- and MPS- modified magadiite produced new layered silicate-organic compounds and each one contained covalent bonds between the interlayer spaces. This structure is dissimilar to that produced using conventional clay polymer systems in which the ionic interactions between silicates and organic modifiers are dominant.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 468-471)

Pages:

2445-2449

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[3] Boyd SA, Lee JF, Mortland, 1988, Attenuating organic contaminant mobility by soil modification. Nature 333, 345-347.

DOI: 10.1038/333345a0

Google Scholar

[4] Brenn U, Schwieger W, Wuttig K, 1999,Rearrangement ofcationic surfactants in magadiite, Colliod Polym. Sci. 277, 394-399.

DOI: 10.1007/s003960050398

Google Scholar

[5] Dailey JS, Pinnavaia TJ, 1992, Silica pillared derivatives of H-magadiite, a crystalline hydrated silica, Chem. Mater. 4 ,855-863.

DOI: 10.1021/cm00022a022

Google Scholar

[6] Endo K, Sugahara Y, Kuroda K, 1994,Formation of intercalation compounds of a layered sodium octosilicate with n-alkyltrimethylammonium ions and the application to organic derivatization, Bull. Chem. Soc. Jpn. 67,3352-3355.

DOI: 10.1246/bcsj.67.3352

Google Scholar

[7] Eugster HP, 1967, Hydrous sodium silicates from lake magadii, kenya: pre-cursors of bedded chert. Science 157,1177-1180.

DOI: 10.1126/science.157.3793.1177

Google Scholar

[8] Fujita I., Kuroda K, Ogawa M, 2003, Synthesis of interlamellar silylated derivatives of magadiite and the adsorption behavior for aliphatic alcohols, Chem. Mater. 15, 3134-3141.

DOI: 10.1021/cm011698y

Google Scholar

[9] Guo Y, Wang Y, Yang Q.X., Li GD, Wang CS, Cui ZC, 2004, Preparation and characterization of magadiite grafted with an azobenzene derivative, Solid State Sci. 2, 239-258.

DOI: 10.1016/j.solidstatesciences.2004.04.006

Google Scholar

[10] Hu N, Rusling JF, 1991, Surfactant-intercalated clay films for electrochemical catalysis, reduction of trichloroacetic acid. Anal. Chem. 63, 2163-2168.

DOI: 10.1021/ac00019a017

Google Scholar

[11] Isoda K, Kuroda K, Ogawa M. 2000, Interlamellar grafting of y-methacryloxypropylsilyl groups on magadiite and copolymerization with methyl methacrylate, Chem. Mater. 12 ,.

DOI: 10.1021/cm0000494

Google Scholar

[12] Kirn CS, Yates DM, Heanet PJ, 1997,The layered sodium silicate magadiite: an analog to smectite for benzene sorption from water, Clays Clay Miner. ,45, 881-885.

DOI: 10.1346/ccmn.1997.0450612

Google Scholar

[13] Lagaly G, Beneke K, Weiss A, Magadiite and H-magadiite. I. 1975, Sodium magadiite and some of its derivatives. Am. Miner. 60, 642-649.

Google Scholar

[14] Ogawa M, Miyoslai M., Kuroda K, 1998, Perfluoroalkylsilylation of the interlayer silanol groups of layered silicate, magadiite, Chem. Mater. 10, 3789-3837.

DOI: 10.1021/cm980660r

Google Scholar

[15] Ogawa M., 2002, Photoisomerization of azobenzene in the interlayer space of magadiite, J. Mater. Chem. 12, 3304-3307.

DOI: 10.1039/b204031j

Google Scholar

[16] Okutomo S, Kuroda K, Ogawa M, 1999, Preparation and characterization of silylated-magadiites, Appl. Clay Sci. 15 , 253-264.

DOI: 10.1016/s0169-1317(99)00010-1

Google Scholar

[17] Shimojima A, Umeda N, Kuroda K, 2001,Synthesis of layered inorganic-organic nanocomposite films from mono-, di-, and trimethoxy(alkyl)silane-tetramethoxysilane systems, Chem. Mater. 13, 3610-3616.

DOI: 10.1021/cm0101125

Google Scholar

[18] Thiesen P.H, Beneke K, Lagaly G, 2002,Silylation of a crystalline silicic acid:an MAS NMR and porosity study, J. Mater. Chem. 12, 3010-3015.

DOI: 10.1039/b204314a

Google Scholar

[19] Wang Z,. Pinnavaia TJ, 1998, Hybrid organic-inorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer, Chem. Mater. 10, 1820-1826.

DOI: 10.1021/cm970784o

Google Scholar

[20] Zhang Z, Saengkerdsub S, Dai S, 2003,Intersurface ion-imprinting synthesis on layered magadiite hosts, Chem. Mater. 15, 2921-2925. Capel-Sanchez MC, Barrio L, Campos-Martin J.M., Fierro J.L.G., 2004, Silylation and surface properties of chemically grafted hydrophobic silica, Colloid Interface Sci. 277, 146-153.

DOI: 10.1021/cm034162g

Google Scholar

[21] Zhang Z, 2003 Coster LD, Der Voori P.V, Grobet PJ, Vansant EF, 1995,The role of silanosi in the modification of silica gel with aminosilanes, J. Colloid Interface Sci. 170, 71-77. Figure 2. X-ray diffraction (XRD) patterns of (a) Na-magadiite, (b) CTAB-magadiite, (c) APTS-magadiite, (d) GPS-magadiite, (e) MPS-magadiite. T2 T3 Q3 Q4 Chemical shift (δ/ppm) Fig.3a. 29Si Solid-state CP-MAS NMR spectra of APTS-magadiite (T2 represents the structure of【Si(OSi)2(OR')R】and T3 of 【Si(OSi)3OR】, peak Q3 indicating the structure【Si(OSi)3OH】 and peak Q4 of【Si(OSi)4】) Chemical shift (δ/ppm) Fig.3b. 29Si Solid-state CP-MAS NMR spectra of GPS-magadiite(T2 represents the structure of【Si(OSi)2(OR')R】and T3 of 【Si(OSi)3OR】, peak Q3 indicating the structure【Si(OSi)3OH】 and peak Q4 of【Si(OSi)4】) Fig.3c. 29Si Solid-state CP-MAS NMR spectra of MPS-magadiite(T2 represents the structure of【Si(OSi)2(OR')R】and T3 of 【Si(OSi)3OR】, peak Q3 indicating the structure 【Si(OSi)3OH】 and peak Q4 of【Si(OSi)4】)

Google Scholar