[2]
S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp.674-693, 1989.Shuqian Luo and Guohong Zhou, Medical image processing and analysis, Beijing: Science Press, 2003,65—70.
DOI: 10.1109/34.192463
Google Scholar
[3]
D. Donoho, Ridge functions and orthonormal ridgelets, J. Approx. Theory 111 (2) (2001) 143--179.
DOI: 10.1006/jath.2001.3568
Google Scholar
[4]
M. Do and M.Vetterli, Orthonormal Finite Ridgelet Transform for Image Compression, Proceedings. 2000 International Conference on Image Processing, vol. 2, pp.367-370, Sep 2000.
DOI: 10.1109/icip.2000.899394
Google Scholar
[5]
E. Cand'es and D. Donoho, A Surprisingly Effective Non adaptive Representation for Objects With Edges, Curves and Surfaces, Vanderbilt University Press, pp.105-120, 2000.
Google Scholar
[6]
E. Candes, Ridgelets: Theory and Application, Ph.D. thesis. Dept. of Stats, Stanford Univ., 1998.
Google Scholar
[7]
S. Alzu'bi, A. Amira, "3D Medical Volume Segmentation Using Hybrid Multiresolution Statistical Approaches," Advances in Artificial Intelligence, vol. 2010, 2010. [Accessed Online on: Oct. 8, 2010]. http://www.hindawi.com/journals/aai/2010/520427.html.
DOI: 10.1155/2010/520427
Google Scholar
[8]
E.J. Candes D.L. Donoho,Curvelets:a surprisingly effectiven on adaptive representation for objects with edges, in:Saint-Malo Proceedings,VanderbilUniversity,Nashville,TN,2000,pp.1-10
Google Scholar
[9]
L.Semler,L.Dettori,Curvelet-based texture classication of tissues in computed tomography,in:IEEE International Conference on Image Proces-sing,2006.
DOI: 10.1109/icip.2006.312873
Google Scholar
[10]
M.N.Do,M.Vetterli,The contourlet transform:an efcient directional multi-resolution image representation, IEEE Transactions on Image Processing 14 (12)(2005)2091-2106
DOI: 10.1109/tip.2005.859376
Google Scholar
[11]
M.N.Do and M.Vetterli, "The contourlet transform: An efficient directional multi resolution image representation",IEEE Trans.Image Process.,vol.14,no.12,pp.2091-2106,Dec.2005.-
DOI: 10.1109/tip.2005.859376
Google Scholar
[12]
P.J. Burt and E.H. Adelson, "The Laplacian pyramid as a compact image code",IEEE Trans.Commun.,vol.31,no.4,pp.532-540,Apr.(1983)
DOI: 10.1109/tcom.1983.1095851
Google Scholar
[13]
R.H. Bamberger and M.J.T. Smith, "A filter bank for the directional decomposition of images:Theory and design", IEEE Trans. Signal Process.,vol.40,no.4,pp.882-893,Apr.1992.
DOI: 10.1109/78.127960
Google Scholar
[14]
Duncan D.-Y. Po,Minh N.Do,Member. "Directional Multiscale Modeling of Images Using the Contourlet Transform".IEEE Trans on Image Proc,2006.
DOI: 10.1109/tip.2006.873450
Google Scholar
[15]
Xin Wen and Lu Zhou, MATLAB neural network applications.Beijing.Science and Technology Press, 2000.271 ~ 275.
Google Scholar
[16]
ArthurL.da Cunha,Jianping Zhou, The Non subsampled Contourlet Transform: Theory, Design, and Applications. IEEE,TRANS, ON IMAGE PROCESSING,VOL.15, NO.10 pp.3089-3101, ,OCTOBER2006
DOI: 10.1109/tip.2006.877507
Google Scholar