Calculating Hydrogen Absorption on Single Wall Carbon Nanotubes with Different Radius Using the First Principle

Article Preview

Abstract:

The controllable hydrogen storage on single wall carbon is studied by using the first principle based on density functional theory (DFT). It concludes that the adsorption of hydrogen on the bare distorted single carbon nanotubes (SWNTs) can be enhanced dramatically when the single wall carbon nanotubes are rotated along the tubs axis and depend on radius of SWNTs. The binding energy decreases as the radius increase.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 472-475)

Pages:

1465-1468

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.Iijima:Nature, 354(1991), pp.56-57.

Google Scholar

[2] S. P.Chan, G.Chen,X. G. Gong, et al: Phys RevLett, 87 (2001),p.205502.

Google Scholar

[3] Y.Yürüm, A.Taralp, V. T.Nejat: International Journal of Hydrogen Energy, 34: (2009), pp.3784-3798.

Google Scholar

[4] D. P. Cao, W. C. Wang: International Journal of Hydrogen Energy, 32 (2007),1939-1942.

Google Scholar

[5] W.BauschlicherCharles, Jr.: NanoLett, 1 (2001),pp.223-226.

Google Scholar

[6] C. W.Bauschlicher, C. R.So:NanoLett, 2 (2002),pp.337-341.

Google Scholar

[7] T.Yildirim, O.Gülseren, and S.Ciraci:Phys Rev B, 64 (2001),p.075404.

Google Scholar

[8] Y. C.Ma, Y. Y.Xia, M. WZhao,et al: Phys Rev B, 63 (2001),p.115422.

Google Scholar

[9] J. S.Arellano, Molina L M, Rubio A, Lo´pez M J, et al.Interaction of molecular and atomic hydrogen with (5,5) and (6,6) single-wall carbon nanotubes, J. Chem. Phys.,2002, 117: 2281.

DOI: 10.1063/1.1488595

Google Scholar

[10] Y.Okamoto, Y.Miyamoto: J PhysChem B, 105 (2001),pp.3470-3474.

Google Scholar

[11] S.Dag, Y.Ozturk, S.Ciraci, et al: PhysRev B, 72 (2005),p.155404.

Google Scholar

[12] L.Chen, Y. M.Zhang, N.Koratkar: Phys Rev B, 77 (2008),033405.

Google Scholar

[13] A. W. C. van den Berg, S. T. Bromley, J. C. Wojdel, et al: Phys. Rev. B, 72 (2005), 155428.

Google Scholar

[14] J. S. Arellano, L. M. Molina, A. Rubio, et al: J. Chem. Phys. 117(2002), p.2281.

Google Scholar

[15] P. Lazic, Ž. Crljen, R. Brako, and B. Gumhalter: Phys. Rev. B72 (2005), p.245407.

Google Scholar

[16] A. J. Du and S. C. Smith: Nanotechnology, 16 (2005), p.2118.

Google Scholar

[17] S. Rigamonti and C. R. Proetto: Phys. Rev. B, 73 (2006),p.235319.

Google Scholar

[18] A. K.Rappe, C. J.Casewit, K. S.Colwell, et al: J Am ChemSoc,114 (1992),pp.10024-10035.

Google Scholar

[19] N.Yao,V.Lordi:JApplPhys, 1998, 84: 1939-1943.

Google Scholar

[20] B.Delley: J ChemPhys,(1990)92508.

Google Scholar

[21] B.Delley: J ChemPhys, 113(2000), pp.7756-7764.

Google Scholar

[22] J. P. Perdew, Y.Wang: Phys Rev B., 45 (1992), pp.13244-13249.

Google Scholar

[23] E.Rangel, G.Ruiz-Chavarria, L. F.Magana, et al: Physics Letters A, 373 (2009), pp.2588-2591.

Google Scholar

[24] D. Henwood and J. David Carey:Phys Rev B, 75 (2007),p.245413.

Google Scholar

[25] S. S. Han and H. M. Lee: Carbon, 42 (2004),pp.2169-2177.

Google Scholar