Electrocatalytic Property for H2O2 Reduction of β-Ni(OH)2 Nanosheets

Article Preview

Abstract:

The β-Ni(OH)2 nanosheets are fabricated by a hydrothermal method. The products are characterized in detail by multiform techniques: X-ray diffraction(XRD), energy-dispersive X-ray analysis(EDS), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). The results show that the obtained products are nanosheets with diameters of 100-200 nm, and thickness ranging from 10nm to 15 nm . The prepared β-Ni(OH)2 nanosheets are used as electrode materials to study the electrocatalytic reduction of hydrogen peroxide (H2O2) in 0.5 M NaOH solution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

1361-1364

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Yang, R. Wang, M. He, J. Zhang, Z. Liu, Ribbon- and boardlike nanostructures of nickel hydroxide: synthesis, characterization, and electrochemical properties, J. Phys. Chem. B Vol. 109 (2005), pp.7654-7658.

DOI: 10.1021/jp050083b

Google Scholar

[2] L. Xu, Y. Ding, C. Chen, L. Zhao, C. Rimkus, R. Joesten, S. L. Suib, 3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method, Chem. Mater. Vol. 20 (2008), pp.308-316.

DOI: 10.1021/cm702207w

Google Scholar

[3] X. J. Han, P. Xu, C.Q. Xu, L. Zhao, Z. B. Mo, T. Liu, Study of the effects of nanometer β-Ni(OH)2 in nickel hydroxide electrodes, Electrochimica Acta Vol. 50 (2005), pp.2763-2769.

DOI: 10.1016/j.electacta.2004.11.025

Google Scholar

[4] H. Liu, T. Peng, D. Zhao, K. Dai, Z. Peng, Fabrication of nickel oxide nanotubules by anionic surfactant-mediated templating method, Mater. Chem. Phys. Vol. 87 (2004), pp.81-86.

DOI: 10.1016/j.matchemphys.2004.04.019

Google Scholar

[5] Y. Wang, Q. Zhu, H. Zhang, Fabrication of β-Ni(OH)2 and NiO hollow spheres by a facile template-free process, Chem. Commun. Vol. 41 (2005), pp.5231-5233.

DOI: 10.1039/b508807k

Google Scholar

[6] X. Kong, X. Liu, Y. He, D. Zhang, X. Wang, Y. Li, Hydrothermal synthesis of β-nickel hydroxide microspheres with flakelike nanostructures and their electrochemical properties, Mater. Chem. Phys. Vol. 106 (2007), pp.375-378.

DOI: 10.1016/j.matchemphys.2007.06.015

Google Scholar

[7] A. Salimi, R. Hallaj, S. Soltanian, H. Mamkhezri, Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles, Anal. Chim. Acta 594 (2007), pp.24-31.

DOI: 10.1016/j.aca.2007.05.010

Google Scholar

[8] W. Sung, J.W. Choi, A membraneless microscale fuel cell using non-noble catalysts in alkaline solution, J. Power Sources Vol. 172 (2007), pp.198-208.

DOI: 10.1016/j.jpowsour.2007.07.012

Google Scholar

[9] L. Gu, N. Luo, G. H. Miley, Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell, J. Power Sources Vol. 173 (2007), pp.77-85.

DOI: 10.1016/j.jpowsour.2007.05.005

Google Scholar

[10] H. Liu, L. Zhang, J. Zhang, D. Ghosh, J. Jung, B.W. Downing, E. Whittemore, Electrocatalytic reduction of O2 and H2O2 by adsorbed cobalt tetramethoxyphenyl porphyrin and its application for fuel cell cathodes, J. Power Sources Vol. 161 (2006), pp.743-752.

DOI: 10.1016/j.jpowsour.2006.04.132

Google Scholar

[11] A. Pizzariello, M. Stred'ansky, S. Miertus, A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix, Bioelectrochemistry Vol. 56 (2002), pp.99-105.

DOI: 10.1016/s1567-5394(02)00026-9

Google Scholar