Influence of the 2,2-Dimethylol Propionic Acid Content on the Structure-Properties of Waterborne Polyurethane

Article Preview

Abstract:

Abstract. Series waterborne polyurethane (WPU) dispersions with different 2,2-dimethylol propionic acid (DMPA) content were synthesized by the prepolymer method. Different configurations in the waterborne polyurethanes were obtained by varying the DMPA content. The structure-properties of the WPU dispersions were characterized by Fourier transformed infrared spectroscopy, Thermogravimetric analysis, differential scanning calorimetry, Zetasizer nano etc. The results indicated that the amount of urethane and urea groups (hard segment) increased in the structure of WPU chains with the increasing content of DMPA. In the meantime, the degree of micro-phase separation increased. On the other hand, as the content of DMPA increased, the particle size, the thermal stability and T-peel strength decreased. Moreover, the increased content of DMPA resulted in higher tensile strength and hardness, but lower elongation at break.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

2116-2121

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Ionescu: Chemistry and Technology of Polyols for Polyurethanes (Rapra Technology Limited Publications, UK 2005), p.1.

Google Scholar

[2] J.Y. Kwon, M.M. Rahman, and H.D. Kim: Fibers and Polymers, Vol. 7 (2006) No.2, p.95.

Google Scholar

[3] T. Tawa and S. Ito: Colloid Polym Sci, Vol. 283 (2005), p.731.

Google Scholar

[4] K.B. Gireesh, K.K. Jena, S. Allauddin, K.R. Radhika, R. Narayan and K.V.S.N. Raju: Progress in Organic Coatings, Vol. 68 (2010), p.165.

DOI: 10.1016/j.porgcoat.2010.02.008

Google Scholar

[5] D.M. Bi, W. Zhi, M.H. Yu, B. Zhou and W.G. Qin: Polymer-Plastics Technology and Engineering, Vol. 49 (2010), p.996.

Google Scholar

[6] V.D. Athawale and M.A. Kulkarni: Journal of Applied Polymer Science, Vol. 117 (2010), p.572.

Google Scholar

[7] L. Wang, Y.D. Shen, X.J Lai, Z.J. Li and M. Liu: Polym Res, Vol. 18 (2011), p.469.

Google Scholar

[8] B.N. Ni, L.T. Yang, C.S. Wang, L.Y. W and D.E. Finlow: Therm Anal Calorim, Vol. 100 (2010), p.239.

Google Scholar

[9] E.H. Kim, W.R. Lee, S.W. Myoung, J.P. Kim, Y.G. Jung, Y.S. Nam, W.S. Kyoung and H. Cho: Progress in Organic Coatings, Vol. 68 (2010), p.130.

DOI: 10.1016/j.porgcoat.2009.08.022

Google Scholar

[10] F.X. Qiu, J.L. Zhang, D.M. Wu, Q.Q. Zhang and D.Y. Yang: Polymers & Polymer Composites, Vol. (2009) No.8, p.521.

Google Scholar

[11] M.A. Pérez-limiñana, F.A. Aís, A.M. Torró-palau, C. Orgilés-barcel and J.M. Martín-martínez: Adhesion Sci, Vol. 21 (2007) No.8, p.755.

DOI: 10.1163/156856107781362635

Google Scholar

[12] Y.S. Kwak, S.W. Park and H.D. Kim: Colloid Polym Sci, Vol. 281 (2003), p.957.

Google Scholar

[13] Y.K. Jhon, I.W. Cheong and J.H. Kim: Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 179 (2001), p.71.

Google Scholar

[14] C.C. Santos, M.C. Delpech and F.M.B. Coutinho: Mater Sci, Vol. 44 (2009), p.1317.

Google Scholar

[15] Y.S. Kwak and H.D. Kim: Fibers and Polymers, Vol. 3 (2002) No.4, p.153.

Google Scholar

[16] J.E. Yang, Y.H. Lee, Y.S. Koo, Y.J. Jung and H.D. kim: Fibers and Polymers, Vol. 3 (2002) No.3, p.97.

Google Scholar

[17] W.G. Xu: Water-borne Polyurethane Materials (Chemical Industry Press, China 2006), p.126. (In Chinese)

Google Scholar

[18] D.K. Chattopadhyay and K.V.S.N. Raju: Prog. Polym. Sci, Vol. 32 (2007), p.352.

Google Scholar