Effect of Y and Zn Substitution on Tensile Properties of 6H-Type LPSO Phase in Mg97Zn1Y2 Alloy

Article Preview

Abstract:

The effect of Y and Zn substitution on tensile properties of 6H-type ABCBCB LPSO phase in Mg97Zn1Y2 alloy has been studied from first principles calculations. From obtained tensile stress-strain relations, at small strains anisotropy of Young’s modulus for Mg95Zn is larger than that for Mg95Y, whereas at lager strains anisotropy of peak tensile stress for Mg95Zn is smaller than that for Mg95Y. The ideal tensile strengths for both Mg95Y and Mg95Zn phases occur in direction, and the ideal tensile strength is increased with single Zn atom substitution. The detailed electronic structure investigations show that the hybridization between Mg and Y (or Zn) atoms is obvious, and the directional bonding between Mg and Y (or Zn) atoms would lead to large anisotropy of tensile stress-strain relations. As the strain increase, the directional bonding between Mg and Y (or Zn) atoms is weakened, the stability would be lowered, and the phases are finally fractured.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

2469-2475

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Potzies and K.U. Kainer: Adv. Eng. Mater. Vol. 6 (2004), p.281

Google Scholar

[2] J. Nie: Scripta Mater. Vol. 48 (2003), p.1009

Google Scholar

[3] Y. Kawamura, K. Hayashi, A. Inoue and T. Masumoto: Mater. Trans. Vol. 42 (2001), p.1172

Google Scholar

[4] A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi and J. Koike: J. Mater. Res. Vol. 16 (2001), p.1894

Google Scholar

[5] E. Abe, Y. Kawamura, K. Hayashi and A. Inoue: Acta Mater. Vol. 50 (2002), p.3845

Google Scholar

[6] D.H. Ping, K. Hono, Y. Kawamura and A. Inoue: Philos. Mag. Lett. Vol. 82 (2002), p.543

Google Scholar

[7] M. Nishida, T. Yamamuro, M. Nagano, Y. Morizono and Y. Kawamura: Mater. Sci. Forum Vol. 419-422 (2003), p.715

Google Scholar

[8] A. Inoue, M. Matsushita, Y. Kawamura, K. Amiya, K. Hayashi and J. Koike: Mater. Trans., JIM Vol. 43 (2002), p.580

Google Scholar

[9] T. Itoi, T. Seimiya, Y. Kawamura and M. Hirohashi: Scripta Mater. Vol. 51 (2004), p.107

Google Scholar

[10] M. Nishida, Y. Kawamura and T. Yamamuro: Mater. Sci. Eng., A Vol. 375 (2004), p.1217

Google Scholar

[11] M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara and M. Nishida: Mater. Sci. Eng., A Vol. 393 (2005), p.269

Google Scholar

[12] M. Suzuki, T. Kimura, J. Koike and K. Maruyama: Scripta Mater. Vol. 48 (2003), p.997

Google Scholar

[13] M. Matsuda, S. Li, Y. Kawamura, Y. Ikuhara and M. Nishida: Mater. Sci. Eng., A Vol. 386 (2004), p.447

Google Scholar

[14] Y. Chino, M. Mabuchi, S. Hagiwara, H. Iwasaki, A. Yamamoto and H. Tsubakino: Scripta Mater. Vol. 51 (2004), p.711

DOI: 10.1016/j.scriptamat.2004.06.007

Google Scholar

[15] Y. Kawamura and S. Yoshimoto: Magnesium Technology 2005, TMS, Warrendale, PA (2005) 499

Google Scholar

[16] G. Garcés, M. Maeso, I. Todd, P. Pérez and P. Adeva: J. Alloys Compd. Vol. 432 (2007), p.10

Google Scholar

[17] X.H. Shao, Z.Q. Yang and X.L. Ma: Acta Mater. Vol. 58 (2010), p.4760

Google Scholar

[18] K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda and Y. Umakoshi: Acta Mater. Vol. 58 (2010), p.6282

DOI: 10.1016/j.actamat.2010.07.050

Google Scholar

[19] Y.F. Wang, Z.Z. Wang, N. Yu, X.Q. Zeng, W.J. Ding and B.Y. Tang: Scripta Mater. Vol. 58 (2008), p.807

Google Scholar

[20] P. Chen, D.L. Li, J.X. Yi, B.Y. Tang, L.M. Peng and W.J. Ding: J. Alloys Compd. Vol. 485 (2009), p.672

Google Scholar

[21] P.Y. Tang, B.Y. Tang, L.M. Peng and W.J. Ding, Mater. Chem. Phys. (2011)

DOI: 10.1016/j.matchemphys.2011.10.028

Google Scholar

[22] A. Datta, U. Ramamurty, S. Ranganathan and U.V. Waghmare: Comput. Mater. Sci. Vol. 37 (2006), p.69

Google Scholar

[23] A. Datta, U.V. Waghmare and U. Ramamurty: Acta Mater. Vol. 56 (2008), p.2531

Google Scholar

[24] G. Kresse and J. Furthmüller: Phys. Rev. B. Vol. 54 (1996), p.11169

Google Scholar

[25] G. Kresse and J. Furthmüller: Comput. Mater. Sci. Vol. 6 (1996), p.15

Google Scholar

[26] J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. L. Vol. 77 (1996), p.3865

Google Scholar

[27] P.E. Blöchl: Phys. Rev. B. Vol. 50 (1994), p.17953

Google Scholar

[28] B.G. Pfrommer, M. Cté, S.G. Louie and M.L. Cohen: J. Comput. Phys. Vol. 131 (1997), p.233

Google Scholar

[29] H.J. Monkhorst and J.D. Pack: Phys. Rev. B. Vol. 13 (1976), p.5188

Google Scholar

[30] D. Roundy, C.R. Krenn, M.L. Cohen and J.W. Morris Jr: Phys. Rev. L. Vol. 82 (1999), p.2713

Google Scholar

[31] D. Roundy, C.R. Krenn, M.L. Cohen and J.W. Morris Jr: Philos. Mag. A Vol. 81 (2001) , p.1725

Google Scholar