First-Principles Study on the Ideal Strengths of Typical Hcp Metals

Article Preview

Abstract:

The ideal strengths of several hcp metals (Be, Mg, Ti, Zn, Y, Zr and Ru) have been investigated by first-principles stress–strain calculations. The results reveal that the ideal shear strengths of these hcp metals occur mainly on basal plane or prismatic plane. Particularly, for basal plane the peak shear stress in direction is smaller than that in direction. The calculated tensile strengths and elongations in direction are broadly consistent with the available theoretical results. Furthermore, both the ideal shear and tension strengths become stronger with the decreasing of c/a for these simple metals or transition metals. The calculated electronic structure further reveals the inherent mechanism of hcp metals.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

2523-2529

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Cui, B. Hu, L. Zhao and S. Liu: Mater. Des. Vol. 32 (2011), p.1684

Google Scholar

[2] L. Lu, T. Liu, S. Jiang, F. Pan, Q. Liu and Z. Wang: Mater. Sci. Eng. A Vol. 527 (2010), p.4050

Google Scholar

[3] J.R. Rice: Mech. Mater. Vol. 6 (1987), p.317

Google Scholar

[4] D. Roundy, C.R. Krenn, M.L. Cohen and J.W. Morris, Jr.: Philos. Mag. A Vol. 81 (2001), p.1725

Google Scholar

[5] D. Roundy, C.R. Krenn, M.L. Cohen and J.W. Morris, Jr.: Phys. Rev. Lett. Vol. 82 (1999), p.2713

Google Scholar

[6] R.F. Zhang, S. Veprek and A.S. Argon: Phys. Rev. B Vol. 77 (2008), p.172103

Google Scholar

[7] Y. Song, R. Yang, D. Li and Z.X. Guo: Philos. Mag. A Vol. 81 (2001), p.321

Google Scholar

[8] M. Jahnátek, M. Krajcí and J. Hafner: Phys. Rev. B Vol. 71 (2005), p.024101

Google Scholar

[9] S. Ogata, J. Li, N. Hirosaki, Y. Shibutani and S. Yip: Phys. Rev. B Vol. 70 (2004), p.104104

Google Scholar

[10] G.Y. Chin and W.L. Mammel: Metall. Trans. B Vol. 1 (1970), p.357

Google Scholar

[11] D.H. Kim, M.V. Manuel, F. Ebrahimi, J.S. Tulenko and S.R. Phillpot: Acta Mater. Vol. 58 (2010), p.6217

Google Scholar

[12] G. Kresse and J. Furthmüller: Phys. Rev. B Vol. 54 (1996), p.11169

Google Scholar

[13] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh and C. Fiolhais: Phys. Rev. B Vol. 46 (1992), p.6671

DOI: 10.1103/physrevb.46.6671

Google Scholar

[14] P.E. Blöchl, O. Jepsen and O.K. Andersen: Phys. Rev. B Vol. 49 (1994), p.16223

Google Scholar

[15] H.J. Monkhorst and J.D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188

Google Scholar

[16] B.G. Pfrommer, M. Côté, S.G. Louie and M.L. Cohen: J. Comput. Phys. Vol. 131 (1997), p.233

Google Scholar

[17] C.S. Barret and T.B. Massalski: Structure of Metals (McGraw-Hill Publications, New York 1966).

Google Scholar

[18] D.G. Flom and R. Komanduri: Wear Vol. 252 (2002), p.401

Google Scholar

[19] A. Akhtar and A. Teghtsoonian: Acta Metall. Vol. 19 (1971), p.655

Google Scholar

[20] W.H. Cubberly: Metals Handbook (ASM Publications, Ohio 1979).

Google Scholar

[21] A.D. McQuillan and M.K. McQuillan: Titanium (Butterworths Publications, London 1956).

Google Scholar

[22] V. Vitek and M. Igarashi: Philos. Mag. A Vol. 63 (1991), p.1059

Google Scholar

[23] W.T. Becker: Ductile and Brittle Fracture (ASM International Publications, USA 2002).

Google Scholar

[24] G.E. Dieter and D. Bacon: Mechanical Metallurgy (McGraw-Hill Publications, New York 1986).

Google Scholar

[25] I.L. May: Principles of Mechanical Metallurgy (Elsevier Publications, New York 1981).

Google Scholar

[26] M.H. Yoo: Metall. Trans. A Vol. 12 (1981), p.409

Google Scholar

[27] C.L. Fu, X. Wang, Y.Y. Ye and K.M. Ho: Intermetallics Vol. 7 (1999), p.179

Google Scholar

[28] Y. Zhang, H. Sun and C.F. Chen: Phys. Rev. B Vol. 77 (2008), p.094120

Google Scholar