Synthesis of Au Nano-Particles Using Plasma Sputtering into Oil

Article Preview

Abstract:

It has been examined to disperse the Au nano-particles directly into liquid by replacing the solid substrate with low-vapor oil in a plasma sputtering apparatus. The dispersing particles in oil are much smaller than the conventional methods. Under low density of particles on oil, the intense absorbance peak is detected around 325nm and the shape and peak of absorption spectra don’t almost change following time, and the size of Au particles is steady. With higher density, the absorbance peak is stronger and shifts to visible light about 20nm. With prolonging measuring time, absorption peaks fall and a new absorption locating on around 550nm gradually appears, large numbers of particles gradually convert and produce the new particles sizes around 3-5nm. under high density, the other intense absorbance peak exists around 540nm besides the peak of 350 nm. High particles density produces the particles sizes around 5-7nm, and the contents and sizes of particles are basic invariablenes against measured period.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

999-1002

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Roberto Pacios, Rebeca Marcilla, Cristina Pozo-Gonzalo,Jose A. Pomposo, Combined electrochromic and plasmonic optical responses in conducting polymer/metal nanoparticle films, J. Nanosci. Nanochnol. 7(2007) 2938-2941.

DOI: 10.1166/jnn.2007.623

Google Scholar

[2] Alex J. Heltzel, Liangti Qu, LimingDai, Optoelectronic property modeling of carbon nanotubes grafted with gold nanoparticles, Nanotechnology 19(2008) 245702.

DOI: 10.1088/0957-4484/19/24/245702

Google Scholar

[3] M. Sastry, M. Rao, K. N. Ganesh, Electrostatic Assembly of Nanoparticles and Biomacromolecules, Acc. Chem. Res. 35(2002) 847-855.

DOI: 10.1021/ar010094x

Google Scholar

[4] S. Pawsey, M. McCormick, S. DePaul, R. Graf, Y. S. Lee, Fast MAS NMR studies of Hydrogen-Bonding Interactions in Self-Assembled Monolayers, J. Am. Chem. Soc. 125(2003)4174-4184.

DOI: 10.1021/ja029008u

Google Scholar

[5] Inhee Choi, Sung Koo Kang, Jeongjin Lee, Younghun Kim, In situ observation of biomolecules patterned on a PEG-modied Si surface by scanning probe lithography, Biomaterials 27(2006) 4655-4660.

DOI: 10.1016/j.biomaterials.2006.04.023

Google Scholar

[6] Taro Toyoda, Sae Tsugawa, Qing Shen, Photoacoustic spectra of Au quantum dots adsorbed on nanostructured TiO2 electrodes together with the photoelectrochemical current characteristics, Journal of Applied Physics 105(2009) 034134.

DOI: 10.1063/1.3074500

Google Scholar

[7] M.Ibrahim Khan, Xu Wang, Xiaoye Jing, Krassimir N. Bozhilov, Cengiz S.Ozkan, Study of a Single InSb Nanowire Fabricated via DC Electrodeposition in Porous Templates, Journal of Nanoscience and Nanotechnology 8(2008) 1-6.

DOI: 10.1166/jnn.2009.dk06

Google Scholar

[8] Davide Barreca, Alberto Gasparotto, Chiara Maccato and Eugenio Tondello, Silica-sandwiched Au nanoparticle arrays by a soft PE-CVD/RF sputtering approach, Nanotechnology 19 (2008) 255602.

DOI: 10.1088/0957-4484/19/25/255602

Google Scholar

[9] T. C. Petersen, S. P. Ringer, Electron tomography using a geometric surface-tangent algorithm: Application to atom probe specimen morphology, Journal of Applied Physics 105(2009) 103518.

DOI: 10.1063/1.3129310

Google Scholar

[10] J. J. Storhoff, C. A. Mirkin, Programmed Materials Synthesis with DNA. Chem. Rev. 99(1999) 1849-1862.

DOI: 10.1021/cr970071p

Google Scholar

[11] R.A. Reynolds, C.A. Mirkin, R. L. Letsinger, Homogeneous, Nanoparticle-Based Quantitative Colorimetric Detection of Oligonucleotides. J. Am. Chem. Soc. 122(2000) 3795-3796.

DOI: 10.1021/ja000133k

Google Scholar

[12] P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, E.T.Yu, Metal and dielectric nanoparticles cattering for improved optical absorption in photovoltaic devices, Journal of Applied Physics 93(2009) 113108.

DOI: 10.1063/1.2957980

Google Scholar

[13] S. H. Lim, D. Derkacs, E. T. Yu, Light scattering into silicon-on-insulator waveguide modes by random and periodic gold nanodot arrays, Journal of Applied Physics 105(2009) 073101.

DOI: 10.1063/1.3100214

Google Scholar

[11] Jianlong Wang, H.Susan Zhou, Aptamer-Based Au Nanoparticles-Enhanced Surface Plasmon Resonance Detection of Small Molecules, Analytical Chemistry 80(2008) 7174-7178

DOI: 10.1021/ac801281c

Google Scholar

[14] Fan Zheng, I. Barke, Xiaosong Liu, F. J. Himpsel, Molecular nanostructures with strong dipole moments on the Si (111)5×2-Au surface, Nanotechnology 19(2008) 445303.

DOI: 10.1088/0957-4484/19/44/445303

Google Scholar

[15] Shigehito Deki, Kensuke Akamatsu, Yoshinori Hatakenaka, Synthesis and characterization of naon-sized gold-palladium bimetallic particles dispersed in polymer thin film matrix, Nanostructured materials 11(1999) 59-65.

DOI: 10.1016/s0965-9773(99)00019-7

Google Scholar

[16] T. Shimizu, T. Teranishi, S. Hasegawa, M. Miyake, Size Evolution of Alkanethiol-Protected Gold Nano-particles by Heat Treatment in the Solid State, J. Phys. Chem. B 107(2003) 2719-2724.

DOI: 10.1021/jp026920g

Google Scholar