[1]
E. M. Kerwin. Damping of Flexural waves by a Constrained Viscoelastic Layer. Journal of the Acoustical Society of America 1959;31(7):952-962
DOI: 10.1121/1.1907821
Google Scholar
[2]
R.A.DiTaranto, Theory of vibratory bending for elastic and viscoelastic layered finite-length beams, American Society of Mechanical Engineers Journal of Applied Mechanics 1965;32:881-886
DOI: 10.1115/1.3627330
Google Scholar
[3]
D.J. Mead, S.Markus. The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions.Journal of sound and vibration 1969;10:163-175
DOI: 10.1016/0022-460x(69)90193-x
Google Scholar
[4]
Douglas BE, Yang JCS. Transverse compressional damping in the vibratory response of clastic-viscoelastic beams.AIAA Journal 1978;16(9):925-930
DOI: 10.2514/3.7595
Google Scholar
[5]
D.J. Mead. A comparison of some equations for flexural vibration of damped sandwich beams. Journal of sound and vibration 1982;83(3):363-377
DOI: 10.1016/s0022-460x(82)80099-0
Google Scholar
[6]
ZhangQJ, SainsburyMG.The Galerkin Element Method Applied to the Vibration of Rectangular Damped Sandwich Plates.Computers and Stuctures,2000,74:717-730
DOI: 10.1016/s0045-7949(99)00068-1
Google Scholar
[7]
EI-Raheb M, Wagner P. Damped response of shells by a constrained viscoelastic layer. ASME Journal of Applied Mechanics 1986;53:902-908.
DOI: 10.1115/1.3171879
Google Scholar
[8]
Tzou HS, Gadre M. Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls. Journal of Sound and Vibration 1989;132:433-450
DOI: 10.1016/0022-460x(89)90637-8
Google Scholar
[9]
A.K. Lall, N.T. Asnani, B.C. Nakra. Damping analysis of partially covered sandwich beams. Journal of Sound and Vibration 1988,123:247-259
DOI: 10.1016/s0022-460x(88)80109-3
Google Scholar
[10]
L.H. Chen, S.S. Huang. Vibration attenuation of a cylindrical shell with constrained layer damping strips treatment. Computer and Structure 2001,79:1355-1362
DOI: 10.1016/s0045-7949(01)00009-8
Google Scholar
[11]
Wang HJ, Chen LW. Finite element dynamic analysis of orthotropic cylindrical shell with a constrained damping layer. Finite Element Analysis and Design 2004,40:737-755
DOI: 10.1016/s0168-874x(03)00112-4
Google Scholar
[12]
H Zeng, C Cai, G SH Pau, GR Liu. Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments. Journal of Sound and Vibration 2005;279:739-756
DOI: 10.1016/j.jsv.2003.11.020
Google Scholar
[13]
M G Sainsbury, Ravish S Masti. Vibration damping of cylindrical shells using strain energy based distribution of an add on viscoelastic treatment. Finite Element in Analysis and Design 2007;43:175-192
DOI: 10.1016/j.finel.2006.09.003
Google Scholar
[14]
Navin Kumar , S P Singh. Experimental study on vibration and damping of curved panel treated with constrained viscoelastic layer. Composite Structures 2010;92:233-243
DOI: 10.1016/j.compstruct.2009.07.011
Google Scholar
[15]
Wang Mingxu,Chen Guoping. Dynamic Performance Optimization of Cylindical Shell with Constrained Damping Layer Using Homogenization Apporach.China Mechanical Engineering 2011 8:892-897
DOI: 10.1109/iccet.2010.5485371
Google Scholar