Preparation of MgB2 Superconducting Thin Films at Low Temperature

Article Preview

Abstract:

MgB2 superconducting thin films have been fabricated on Silicon (111) substrate in a two-step ex situ approach. The precursor boron film was deposited by chemical vapor deposition by using diborane as the boron source at 460°C.The Magnesium film with a thickness of about 380nm was deposited on top of the boron film by magnetron sputtering. The samples were then post-annealed in situ in argon atmosphere at 500°C for time range from 2.5h to 5.0h. The sample for optimized annealing time exhibits abrupt superconducting transition, with an onset temperature around 35K and a zero resistance temperature greater than 34K. The microstructures and morphological properties of the films were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 479-481)

Pages:

1781-1785

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y; Nature 410, 63 (2001)

Google Scholar

[2] X. X. Xi, A. V. Pogrebnyakov, X. H. Zeng, J M Redwing, et al; Technol. 17 (2004) S196–S201

Google Scholar

[3] Eom C B, Lee M K, Choi J H, et al ;Nature 411 558 (2001).

Google Scholar

[4] P.C. Canfield, S.L. Bud'ko and D.K. Finnemore;Physica C 385 (2003) 1-7.

Google Scholar

[5] Ray Radebaugh; Refrigeration for superconductors, Proceedings of the IEEE, vol. 92, No. 10, October (2004)

Google Scholar

[6] W.R. Mérida, J. A. Barclay; Advances in Cryogenic Engineering, Vol. 43, pp.1597-1604.

Google Scholar

[7] Robert A. Ackermann, Delton A. Grey et al, GE Global Research Technical Report, 2002GRC176, July 2002.

Google Scholar

[8] Xianghui Zeng, Alexej V. Pogrebnyakov, Armen Kotcharov et al; Nature Materials 1, 35 - 38 (2002)

Google Scholar

[9] Y. Harada, M. Uduka, Y. Nakanishi, N. Yashimoto, M. Yoshizawa; Physica C 412–414 (2004) 1383.

Google Scholar

[10] A. Plecenik, L. Satrapinsky, P.Kúš; Physica C 386 (2001) 251.

Google Scholar

[11] A. Brinkman, D. Mijatovic, G. Rijnders, V. Leca, H.J.H. Smilde, I. Oomen, A.A. Golubov, F. Roesthuis, S. Harkema, H. Hilgenkamp;Physica C 353 (2001) 1.

DOI: 10.1016/s0921-4534(01)00396-3

Google Scholar

[12] Z. Mori, T. Doi, Y. Ishizaki, H. Kitaguchi, M. Okada, K. Saitoh, Y. Hakuraku; Physica C 412–414 (2004) 1371.

DOI: 10.1016/j.physc.2004.01.169

Google Scholar

[13] Š. Chromik, Š. Beńačka, Š.Gaži et al; Vacuum 69 (2002) 351.

Google Scholar

[14] Z. K. Liu, D. G. Schlom, Q. Li, X. X. Xi, Appl. Phys. Lett. 78, 3678 ~2001.

Google Scholar

[15] D. S. Wang, X. H. Fu, Z. P. Zhang, J. Yang; Chinese Physics Letters, Vol.19, Nov.8, 1179。

Google Scholar

[16] X. H. Fu, D. S. Wang, Z. P. Zhang and J Yang; Physica C: superconductivity & Its applications, Vol. 377/4, pp.407-410.

Google Scholar

[17] C. X. Cui, D. B. Liu, Y. T. Shen et al; Acta materialia, 52 (2004) 5757–5760

Google Scholar