Enzymatic Extraction of Polysaccharides from Laminaria Japonica and their Free Radical Scavenging Activity and Antimicrobial Activity Evaluation

Article Preview

Abstract:

Complex enzymes, including cellulase, pectinase and neutral protease were used for extraction of laminaria polysaccharides, which have a broad range of applications in the food, pharmaceutical, agricultural and chemical industries. The enzymatic extraction conditions were optimized and the maximum polysaccharides yield was achieved with the addition of 2.5% of enzymes under a pH value of 5.0 and temperature of 55 °C for 210 min. Polysaccharides prepared under the above conditions were effective against some pathogenic and spoilage microorganisms, including Salmonella sp, Bacillus subtilis, Enterococcus faecalis, Proteus vulgaris, Staphylococcus aureus, Escherichia coli, Pseudomonas fluorescens, with a diameter range of 5.1 ± 0.29-12.5 ± 0.78 mm. In addition, antioxidant activity of laminaria polysaccharides against hydroxyl radicals was also investigated and it was observed that the polysaccharides displayed obvious scavenging activity on hydroxyl radicals in concentration-dependent manner. Overall, polysaccharides from Laminaria Japonica demonstrated potential applications in food safety and control.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 479-481)

Pages:

605-610

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. H. Xue, Y. Fang, H. Lin, L. Chen, Z. J. Li, D. Deng and C. X. Lu: J. Appl. Phycol. Vol. 13 (2001), p.67

Google Scholar

[2] K. H. Kim, Y. W. Kim, H. B. Kim, B. J. Lee and D. S. Lee: Biotechnol. Lett Vol. 28, (2006), p.439

Google Scholar

[3] C. Deville, J. Damas, P. Forget, G. Dandrifosse and O. Peulen: J. Sci. Food Agric. Vol. 84, (2004), p.1030

Google Scholar

[4] J. H. Jhamandas, M. B. Wie, K. Harris, D. MacTavish and S. Kar: Eur. J. Neurosci. Vol. 21, (2005), p.2649

Google Scholar

[5] S. C. Feldman, S. Reynaldi, C. A. Stortz, A. S. Cerezo and E. B. Damonte: Phytomedicine, Vol. 6, (1999), p.335

DOI: 10.1016/s0944-7113(99)80055-5

Google Scholar

[6] W. A. P. Black, W. J. Cornhill, E. T. Dewar and F. N. Woodward: J. Appl. Chem. Vol. 1, (1951), p.505

Google Scholar

[7] B. N. Ames: Science, Vol. 221, (1983), p.1256

Google Scholar

[8] E. R. Stadtman: Science, Vol. 257, (1992), p.1220

Google Scholar

[9] Z. Formanek, J. P. Kerry, F. M. Higgins, D. J. Buckley, P. A. Morrissey and J. Farkas: Meat. Sci, Vol. 58, (2001), p.337.

Google Scholar

[10] J.Wang, Q. B. Zhang, Z. S. Zhang and Z. Li: Int. J. Biol. Macromol. Vol. 42, (2008), p.127

Google Scholar

[11] D.Yuzbasioglu, N. Zengin, F. Unal, S. Yilmaz and H. Aksoy: Food Chem. Toxicol. Vol. 49, (2011), p.763

Google Scholar

[12] P.Yesudhason, T. K. S. Gopal, C. N. Ravishankar, K. V. Lalitha and A. Kumar: J. Food Biochem. Vol. 34, (2010), p.399

Google Scholar

[13] C. C.Tassou, E. H. Drosinos and G. J. E. Nychas: J. Food Prot. Vol. 59, (1996), p.31

Google Scholar

[14] M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith: Anal. Chem. Vol. 28, (1956), p.350

Google Scholar

[15] H. M. Qi, Q. B. Zhang, T. T. Zhao, R. Chen, H. Zhang, X. Z. Niu and Z. Li: Int. J. Biol. Macromol. Vol. 37, (2005), p.195

Google Scholar