[1]
Gongyan Lei, Lecture Notes of Mathematical Model, Beijing: Peking University Press, 2004, pp.72-77.
Google Scholar
[2]
Huanwen Tang, Mingfeng He, A General Introduction to Mathematical Model (2nd Edition), Beijing: Higher education Press, 2002,pp.161-165.(in Chinese)
Google Scholar
[3]
Zhenting Hou and Guoxin Liu. Markov Skeleton Process and Their Applications. Science Press , 2005, pp.1-30, 92-107.
Google Scholar
[4]
Zhenting Hou, Markov Skeleton Proces-Hybrid System Models. Hunan Science and Technology Press, Changsha. 2000. pp.11-54,411-416. (in Chinese)
Google Scholar
[5]
Yongwei Zhou,Hehua Fan, 2009 International Conference of Management Engineering and Information Technology, 2009.10, p.905~908.
Google Scholar
[6]
Cox D.R. The analysis of non-Markovian stochastic process by the inclusion of supplementary variables, Proc. Camb. Phill. Soc., 51.1955, pp.433-441.
DOI: 10.1017/s0305004100030437
Google Scholar
[7]
Guanghui xu, Stochastic Serving System (2nd Edition), Science Press, Beingjing.1988. pp.46-81. (in Chinese)
Google Scholar
[8]
Bin Ynag, Tianli Wan, Science and Technology Management Research,2010, pp.168-171.
Google Scholar
[9]
Kai Tang, Huiyun Zhang, Journal of Hebei University of Technology, 2002,Vol31(6),pp.18-24. (in Chinese)
Google Scholar
[10]
Kai Tang, Huiyun Zhang, Research on Diffusion Model of Technological Innovation in Heterogeneous Field, 2001,Vol30(2), pp.20-24.
Google Scholar
[11]
Huiyun Zhang,Yuanhu Tang, Science & Technology Progress and Policy, 2002.11, pp.117-119. (in Chinese)
Google Scholar