[1]
F. Alcrudo, P. Garcia-Navarro,Ahigh-resolution Godunov-type scheme in finite volumes for the2Dshallow-water equations, Int. J. Numer. Methods Fluids 16 (1993) 489–505.
DOI: 10.1002/fld.1650160604
Google Scholar
[2]
D.H. Zhao, H.W. Shen, G.Q. Tabious III, J.S. Lai W.Y. Tan, Finite-volume two-dimensional unsteady flow model for river basins, ASCE J. Hydraul. Eng. 120 (1994) 864–883.
DOI: 10.1061/(asce)0733-9429(1994)120:7(863)
Google Scholar
[3]
S. Osher, F. Solomone, Upwind difference schemes for hyperbolic systems of conservation laws, Math. Comput. 38 (1982) 339–374.
DOI: 10.1090/s0025-5718-1982-0645656-0
Google Scholar
[4]
K. Anastasiou, C.T. Chan, Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes, Int. J. Numer. Methods Fluids 24 (1997) 1225–1245.
DOI: 10.1002/(sici)1097-0363(19970615)24:11<1225::aid-fld540>3.0.co;2-d
Google Scholar
[5]
C.T. Chan, K. Anastasiou, Solution of incompressible flows with or without a free surface using the finite volume method on unstructured triangular meshes, Int. J. Numer. Methods Fluids 29 (1999) 35–57.
DOI: 10.1002/(sici)1097-0363(19990115)29:1<35::aid-fld773>3.0.co;2-n
Google Scholar
[6]
A. Harten, P.D. Lax, B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws,IAM Rev. 25 (1983) 35–61.
DOI: 10.1137/1025002
Google Scholar
[7]
K. Hu, C.G. Mingham, D.M. Causon,Abore-capturing finite volume method for open-channel flows, Int. J. Numer. Methods Fluids 28 (1998) 1241–1261.
DOI: 10.1002/(sici)1097-0363(19981130)28:8<1241::aid-fld772>3.0.co;2-2
Google Scholar
[8]
M.S. Tseng, Explicit finite volume non-oscillatory schemes for 2D transient free-surface flows, Int. J. Numer. Methods Fluids 30 (1999) 831–843.
DOI: 10.1002/(sici)1097-0363(19990815)30:7<831::aid-fld865>3.0.co;2-6
Google Scholar
[9]
J.W. Wang, R.X. Liu, The composite finite volume method on unstructured triangular meshes for2Dshallowwater equations, in press.
Google Scholar