Polypseudorotaxane Hydrogels Based on F127 Block-Selected Inclusion Complexation with α-Cyclodextrin

Article Preview

Abstract:

Supramolecular hydrogels were formed through F127, acryloyl chloride modified F127 inclusion complex with α-cyclodextrin, respectively. The structure of modified copolymers and inclusion complex was characterized by Fourier transform infrared spectroscopy (FTIR) and hydrogen nuclear magnetic resonance (1H-NMR). Hydrogels formed from supramolecular inclusion are imparted channel-type structure investigated by wide angle x-ray diffraction (WAXRD). Differential scanning calorimetry (DSC) and TG experiments showed that thermal stability of hydrogels depend on the nature of axis polymer. The relative model was proposed to elucidate the inclusion complexes and hydrogels formation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 482-484)

Pages:

1898-1903

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kopecek Jindrich. J Polym Sci Part A: Polym Chem, Vol. 47(2009), p.5929.

Google Scholar

[2] Sosnik A., Cohn D., San Roman J., et al. J. Biomater.Sci. Polym. Ed., Vol.14(2003), p.227.

Google Scholar

[2] Law TK.W haleley, T L., Florence AT. Int J Pharm, Vol. 21(1984), p.277.

Google Scholar

[4] Helena Dodziuk in: Cyclodextrins and their complexes. Publications /Wiley-Vch Verlag Gmbh & Co. Kgaa (2006), pp.1-50.

Google Scholar

[5] Harada Akira, Kamachi Mikiharu. Macromolecules, Vol. 23(1990), p.2821.

Google Scholar

[6] Edvaldo Sabadini, Terence Cosgrove. Langmuir, Vol. 19(2003), p.9680.

Google Scholar

[7] Zhu X. Y.; Chen, L.; Yan D. Y.; et al.. Langmuir, Vol. 20(2004), p.484.

Google Scholar

[8] Huh K. M.; Ooya T.; Lee W. K., et al. Macromolecules, Vol. 34 (2001), p.8657.

Google Scholar

[9] Li Jun, Li Xu, Ni Xiping, et al. Biomaterials, Vol.27(2006), p.4132.

Google Scholar

[10] Taura Daisuke, Li Shujing, Hashidzume Akihito,et al. Macromolecules, Vol. 43(2010), p.1706.

Google Scholar

[11] He CL, Kim SW, Lee DS. J. Controlled Release, Vol. 127(2008), p.189.

Google Scholar

[12] Lee, S. Y.; Tae, G. J. Controlled Release, Vol., 119(2007), p.313.

Google Scholar

[13] Nivaggioli T., Alexandridis P., Hatton T. A., et al. Langmuir, Vol., 11(1995), p.730.

Google Scholar

[14] Li Jun, Li Xu, Zhou Zhihan, et al. Macromolecules, Vol., 34(2001), p.7236.

Google Scholar

[15] Lazzara G., Milioto S. J. Phys. Chem. B, Vol., 112(2008), p.11887.

Google Scholar

[16] P. Alexandridis, J.F. Holzwarth and T.A. Hatton. Macromolecules, Vol., 27(1994), p.2414.

Google Scholar

[17] Li Jun, Ni Xiping, Zhou Zhihan, et al. J. Am. Chem. Soc., Vol., 125(2003), p.1788.

Google Scholar

[18] Alejandro Sosnik, Daniel Cohn. Biomaterials, Vol., 25(2004), p.2851.

Google Scholar