Charge Transport and Ultrasonic Properties of La1/3Sr2/3Fe0.95Co0.05O3Perovskite

Article Preview

Abstract:

The longitudinal ultrasonic velocity (V) and attenuation at a frequency of 10MHz have been measured in single-phase polycrystalline La1/3Sr2/3Fe0.95Co0.05O3 from 20K to 300K. The temperature dependence of resistivity indicates that La1/3Sr2/3Fe0.95Co0.05O3 undergoes charge ordering transition at TCO. A dramatic increase in V is observed at TCO, which is accompanied by a sharp peak in attenuation. This simultaneous occurrence of resistivity and ultrasonic anomalous features implies extremely strong electron-phonon interaction, which is due to the the Jahn-Teller effect of high-spin Fe4+. Below TCO, another softening in V accompanied by a wide ultrasonic attenuation peak is observed. The analysis of the results suggests that these anomalies may correspond to the breathing-type distortion of Fe-O octahedron.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 482-484)

Pages:

819-823

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.von Helmolt, J.Wecker, B.Holzapfel, L.Schultz, K.Samwer, Phys.Rev.Lett. 71(1993), p.2331

Google Scholar

[2] C.N.R. Rao, B.Raveau: Colossal Magnetoresistance, Charge ordering and Related Properties of Manganese Oxides (World Scientific, Singapore, 1998).

DOI: 10.1142/3605

Google Scholar

[3] J B Yang, X D Zhou, Z Chu, W M Hikal, Q Cai, J C Ho, D C Kundaliya, W B Yelon, W J James, H U Anderson, H H Hamdeh, S K Malik, J. Phys.: Condens. Matter. 15 (2003), p.5093

DOI: 10.1088/0953-8984/15/29/321

Google Scholar

[4] S.K. Park, T.Ishikawa, Y.Tokura, J.Q.Li, Y.Matsui, Phys.Rev.B 60 (1999). p.10788

Google Scholar

[5] Changfei Zhu, Renkui Zheng, Jinrui Su, Wenhai Shong, J. Phys.: Condens. Matter 12(2000), pp.823-828.

Google Scholar

[6] J.A. Alonso, J.L. García-Muñoz M.T. Fernández-Díaz, M.A.G. Aranda, M.J. Martínez-Lope, M.T. Casais, Phys.Rev.Lett. 82(1999), p.3871

Google Scholar

[7] P.M. Woodward, D.E. Cox, E.Moshopoulou, A.W. Sleight, S.Morimoto, Phys.Rev.B 62(2000), p.844

Google Scholar

[8] P.D. Battle, T.C. Gibb, P.Lightfoot, J.Solid State Chem.84(1990), p.271

Google Scholar

[9] J.Q.Li, Y.Matsui, S.K. Park, Y.Tokura, Phys.Rev.Lett. 79(1997), p.297

Google Scholar

[10] Shankar Ghosh, N.Kamaraju, M.Seto, A.Fujimori, Y.Takeda, S.Ishiwata, S.Kawasaki, M.Azuma, M.Takano, A.K. Sood, Phys.Rev.B 71(2005), p.245110

Google Scholar

[11] R.J.McQueeney, J.Ma, S.Chang, J.-Q.Yan, M.Hehlen, and F.Trouw, Phys.Rev.Lett., 98 (2007), p.126402

Google Scholar

[12] Hui Kong, Changfei Zhu, Appl.Phys.Lett. 88(2006), p.041920

Google Scholar

[13] Shuji Kawasaki, Mikio Takano, Yasuo Takeda, Solid State Ionics 108(1998), p.221

Google Scholar

[14] Peter Adler, Samrat Ghosh, Solid State Science 5(2003), p.445-

Google Scholar

[15] A.P. Ramirez, P.Schiffer, S-W.Cheong, C.H. Chen, W.Bao, T.T.M. Palstra, P.L. Gammel, D.J. Bishop, B.Zegarski, Phys.Rev.Lett. 76(1996), p.3188

Google Scholar

[16] Don Berlincourt, Hans Jaffe, Phys.Rev. 111(1958), p.143

Google Scholar

[17] B.I. Min, J.D. Lee, S.J. Youn, J.Magn.Magn.Mater. 171(1998), p.881

Google Scholar

[18] M.Abbate, F.M.F. de Groot, J.C. Fuggle, A.Fujimori, O.Strebel, F.Lopez, M.Domke, G.Kaindl, G.A. Sawatzky, M.Takano, Y.Takeda, H.Eisaki, S.Uchida, Phys.Rev.B 46(1992), p.4511

Google Scholar

[19] A.E. Bocquet, A.Fujimori, T.Mizokawa, T.Saitoh, H.Namatame, S.Suga, N.Kimizuka, Y.Takeda, M.Takano, Phys.Rev.B 45(1992), 1561-1570.

Google Scholar