[1]
Sahoo P K. A survey of threshold techniques. Computer Vision Graphic, Image Process, 1988, 41(2): 233~260.
Google Scholar
[2]
Otsu N. A threshold selection method from gray_level histogram. IEEE Trans. On SMC. 1979, 9: 62~66.
Google Scholar
[3]
Yan xueqiang, Ye Xiuqing, Liu Jilin, et, al. Maximum entropy image thresholding algorithm based on the histogram defined on quantization image. PR & AI. 1998, 11(3): 352~358.
Google Scholar
[4]
Xue Jinghao, Zhang Yujin, Lin Xinggang. Image segmentation algorithms based on cross entropy and fuzzy divergence. Acta Electronica Sinica. 1999, 27(10): 131~134.
Google Scholar
[5]
Brink A D. Tresholding of digital images using two dimensional entropies[J]. Pattern Recognition, 1992, 25(8): 803~808.
DOI: 10.1016/0031-3203(92)90034-g
Google Scholar
[6]
Mohamed N Ahmed, Sameh M Yamany, Nevin Mo-hamed et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imag, 2002, 21(3): 193~198.
DOI: 10.1109/42.996338
Google Scholar
[7]
Kooepfler G, Lopez C, Morel J M. A multiscale algorithm for image segmentation by variational method[J]. SIAM-Journal on Numerical Analysis, 1994, 31(1): 282~299.
DOI: 10.1137/0731015
Google Scholar
[8]
Liu Guocai, Wang Yaonan, Duan XuanChu. Knowledge based hierarchical mumford-shah model for vector-valued image segmentation. 2009, 35(4): 356~363.
DOI: 10.1109/nssmic.2009.5402019
Google Scholar
[9]
Deng Shiwei, Yuan Baozong. Range image segmentation based on mathematrical morphology[J]. Acta Electronica Sinica, 1995, 23(4): 6~9.
Google Scholar
[10]
Liu zhimin, Yang jie, Shi pengfei. Image segmentation algorithm based on mathematical morphology[J]. Computer engineering & science. 1998, 20(4): 21~27.
Google Scholar
[11]
Xu Chuanxiang, Shi Qingyun, Cheng Minde. Zero-Symmetrical and Zero-Antisymetrical Dyadic Wavelet and Its Application to Edge Detection. China journal of image and graphics. 1996, 1(1), 4~11.
Google Scholar
[12]
Cheng Wufan. Wavelet analysis and application in digital image processing. Beijing: Scicence press, (2002).
Google Scholar
[13]
Cesmeli E. Texture segmentation using ganssian m markov random fields and neural oscillator networks[J]. IEEE Transactions on neural networks, 2001, 12(2): 2994~404.
DOI: 10.1109/72.914533
Google Scholar
[14]
Dekruger D, Hunt B R. Image processing and neural networks for recognition of cartographic area features[J]. Pat tern Recognition, 1994, 27(4): 461~483.
DOI: 10.1016/0031-3203(94)90030-2
Google Scholar
[15]
Rout S , Srivastava S P, M ajumdar J. Multimodal Image Segmentation Using a Modified Hopfield Neural Network[J]. Pattern Recognition, 1998, 31(6): 743~750.
DOI: 10.1016/s0031-3203(97)00089-7
Google Scholar
[16]
Xiong Zhaoxian. The fractal research on ceramics material[]. Beijing: Science Press, 2000, 2~7.
Google Scholar
[17]
Huang Handong, Wei Xiucheng, Ye lianchi, et, al. Application of fractal edge detection in fracture prediction[J]. Oil Geophysical Processing. 2002, 37(1): 65~69(in Chinese).
Google Scholar
[18]
Wang Hua, Zhu Ning, Wang Qi. Fractal features analysis and classification for texture of pavement surfaces[J]. Journal of Harbin Institute of Technology. 2006, 37(6): 816~818.
Google Scholar
[19]
Yu Xiangjun, Ma Ruoding, Liu Yan, et al. Study of fractal theory on image segmentation of pavement surface crack[J]. 2008, 24(2-3): 302~304.
Google Scholar