[1]
M.S. Lizer, M. Tańcula, T. Włodek, K. Rodak, M. Hüller, V. Kochnev, E. Fokina and K. MacKenzie, The effect of mechanical activation on the properties of β-sialon precursors, J. Eur. Ceram. Soc. 28 (2008) 279-288.
DOI: 10.1016/j.jeurceramsoc.2007.05.003
Google Scholar
[2]
I. Ganesh, N. Thiyagarajan, D.C. Jana, Y.R. Mahajan and G. Sundararajan, Influence of Chemical Composition and Y2O3 on Sinterability, Dielectric Constant, and CTE of β-SiAlON, J. Am. Ceram. Soc. 91 (2008) 115-120.
DOI: 10.1111/j.1551-2916.2007.02144.x
Google Scholar
[3]
V.X. Lima Filho, J.P. Davim, C.A. Cairo and J.M.F. Ferreira, Preparation and Characterization of SiAlON Matrix Composites Reinforced with Combustion Synthesis Rod-like SiAlON Particles, Int. J. Refract. Met. Hard Mater. 27 (2009) 647-652.
DOI: 10.1016/j.ijrmhm.2008.10.010
Google Scholar
[4]
M. Mitomo and A. Ishda, Stability of α-Sialon in Low Temperature Annealing, J. Eur. Ceram. Soc. 19 (1999) 7-15.
Google Scholar
[5]
S. Holzer, J.P. Häntsche, U. Spicher, D. Badenheim, R. Oberacker and M.J. Hoffmann, Development of Sialon Ceramics for Lubricated Sliding Applications, Materialwiss. Werkstofftech. 36 (2005) 117-121.
DOI: 10.1002/mawe.200500869
Google Scholar
[6]
H. Yurdakul and S. Turan, Incorporation of the Transition Metals (Cr and Fe) into β-SiAlON Crystal Structure, Ceram. Int. 37 (2011) 1501-1505.
DOI: 10.1016/j.ceramint.2011.01.009
Google Scholar
[7]
W.W. Chen, Y.B. Cheng and W.H. Tuan, Preparation of sialon–transition metal silicide composites, J. Eur. Ceram. Soc. 26 (2006) 193-199.
DOI: 10.1016/j.jeurceramsoc.2004.10.014
Google Scholar
[8]
J.Z. Yang, Z.H. Huang, M.H. Fang, Y.G. Liu, J.T. Huang and J.H. Hu, Preparation and Mechanical Properties of Fe/Mo–Sialon Ceramic Composites, Scripta Mater. 61 (2009) 632-635.
DOI: 10.1016/j.scriptamat.2009.05.042
Google Scholar
[9]
J.Z. Yang, Z.H. Huang, X.Z. Hu, M.H. Fang, Y.G. Liu and J.T. Huang, Microstructure Characteristics of FeMo–Sialon Ceramic Composite, Mater. Sci. Eng. A 528 (2011) 2196-2199.
DOI: 10.1016/j.msea.2010.11.071
Google Scholar
[10]
J. Li, Y.S. Yin, X.Y. Tan and J.D. Zhang, AZrO2 (3Y) Matrix Composite Toughened with Fe3Al Intermetallic, J. Am. Ceram. Soc. 88 (2005) 235–238.
DOI: 10.1111/j.1551-2916.2004.00038.x
Google Scholar
[11]
H.Y. Gong, Y.S. Yin, X. Wang and Y.C. Liu, Fabrication and microstructure of in situ toughened Al2O3/Fe3Al, Mater. Res. Bull. 39 (2004) 513-521.
DOI: 10.1016/j.materresbull.2004.01.004
Google Scholar
[12]
Z.B. Tian, X.H. Wang, S.J. Lee, K.H. Hur and L.T. Li, Microstructure Evolution and Dielectric Properties of Ultrafine Grained BaTiO3-Based Ceramics by Two-Step Sintering, J. Am. Ceram. Soc. 94 (2011) 1119–1124.
DOI: 10.1111/j.1551-2916.2010.04234.x
Google Scholar
[13]
I. Ahmad, H. Cao, H. Chen, H. Zhao, A. Kennedy and Y.Q. Zhu, Carbon Nanotube Toughened Aluminium Oxide Nanocomposite, J. Eur. Ceram. Soc. 30 (2010) 865–73.
DOI: 10.1016/j.jeurceramsoc.2009.09.032
Google Scholar
[14]
T. Shimoo, K. Okamura and T. Yamasaki, Reaction between Si3N4 and Fe-Ni alloy, J. Mater. Sci. 34 (1999) 5525-5532.
Google Scholar
[15]
H.C. Ewing and S. Yang, The Effect of Precursor Composition and Sintering Additives on the Formation of β-Sialon from Al, Si and Al2O3 Powders, Ceram. Int. 37 (2011) 1667-1673.
DOI: 10.1016/j.ceramint.2011.01.041
Google Scholar
[16]
E.Q. He, J.S. Yue, L. Fan, C. Wang and H.J. Wang, Synthesis of Single Phase β-SiAlON Ceramics by Reaction-bonded Sintering Using Si and Al2O3 as Raw Materials, Scripta Mater. 65 (2011) 155-158.
DOI: 10.1016/j.scriptamat.2011.03.040
Google Scholar