[1]
A.K.W. Ahmed, C. Liu, and I. Haque: Computer Simulation of Steady State Curving Performance of High Speed Articulated Train Set. Transactions of CSME Vol. 20, (1996), pp.365-389.
DOI: 10.1139/tcsme-1996-0021
Google Scholar
[2]
S.Y. Lee and Y.C. Cheng: A New Dynamic Model of High-Speed Railway Vehicle Moving on Curved Tracks. Transactions of the ASME Journal of Vibration and Acoustics Vol. 130, (2008), pp.011009-1~011009-10.
DOI: 10.1115/1.2775515
Google Scholar
[3]
Y.C. Cheng and C.K. Lee: Integration of Uniform Design and Kriging Interpolation to the Optimization of Suspension Parameters of a High Speed Railway Vehicle. International Conference on Modelling, Identification and Control, Okayama, Japan (2010).
Google Scholar
[4]
M. Vidyasager: Nonlinear Systems Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1978).
Google Scholar
[5]
Y. Wang, and K.T. Fang: A note on uniform distribution and experimental design. KEXUE TONGBAO Vol. 26, No. 6, (1981), p.485–489.
Google Scholar
[6]
K.T. Fang: The Uniform Design: Application of Number-Theoretic Methods in Experimental Design. Acta Mathematicae Applicatae Sinica Vol. 3, (1980), pp.363-372.
Google Scholar
[7]
Y.Y. Li and C.R. Hu: Experiment Design and Data Processing (Chemical Industry Press, Beijing, 2008).
Google Scholar
[8]
J. Nelder, and R. Mead: A Simplex Method for Function Minimization, Computer Journal, (1965).
Google Scholar
[1]
[2] [3] [4] [5] [6] [1] [1] [2] [3] [5] [7] [10] [2] [2] [4] [6] [10] [3] [9] [3] [3] [6] [9] [4] [10] [8] [4] [4] [8] [1] [9] [6] [7] [5] [5] [10] [4] [3] [2] [6] [6] [6] [1] [7] [8] [9] [5] [7] [7] [3] [10] [2] [5] [4] [8] [8] [5] [2] [7] [1] [3] [9] [9] [7] [5] [1] [8] [2] [10] [10] [9] [8] [6] [4] [1] [11] [11] [11] [11] [11] [11] [11] Table 2 Upper and lower bounds of suspension parameters Bound (N/m) (N/m) (N/m) (N/m) (N-s/m) (N-s/m) Upper 1200000 1200000 150000 150000 150000 150000 Lower 400000 400000 5000 4000 5000 5000 Table 3 The experiments planned based on Exp.
DOI: 10.7717/peerj-cs.805/table-11
Google Scholar
[1]
400000 480000 34000 62400 92000 135500.
Google Scholar
[2]
480000 640000 77500 135400 34000 121000.
Google Scholar
[3]
560000 800000 121000 47800 135500 106500.
Google Scholar
[4]
640000 960000 5000 120800 77500 92000.
Google Scholar
[5]
720000 1120000 48500 33200 19500 77500.
Google Scholar
[6]
800000 400000 92000 106200 121000 63000.
Google Scholar
[7]
880000 560000 135500 18600 63000 48500.
Google Scholar
[8]
960000 720000 19500 91600 5000 34000.
Google Scholar
[9]
1040000 880000 63000 4000 106500 19500.
Google Scholar
[10]
1120000 1040000 106500 77000 48500 5000.
Google Scholar
[11]
1200000 1200000 150000 150000 150000 150000 Table 4 Results of experiments Exp. V1 (km/h) (l=0. 05) V2(km/h) (l=0. 07) V3(km/h) (l=0. 1) SNR 100/SNR.
DOI: 10.1177/237455680430.n2
Google Scholar
[1]
[92] [75] [60] 37. 18434 2. 68930.
Google Scholar
[2]
[88] [74] [61] 37. 13325 2. 69300.
Google Scholar
[3]
304 322 286 49. 62695 2. 01503.
Google Scholar
[4]
279 297 320 49. 46294 2. 02172.
Google Scholar
[5]
278 293 316 49. 38019 2. 02510.
Google Scholar
[6]
308 329 316 50. 02986 1. 99881.
Google Scholar
[7]
322 336 347 50. 48866 1. 98064.
Google Scholar
[8]
304 301 255 49. 06150 2. 03826.
Google Scholar
[9]
337 346 350 50. 73630 1. 97098.
Google Scholar
[10]
339 325 301 50. 11642 1. 99535.
Google Scholar
[11]
273 276 282 48. 84723 2. 04720 Table 5 Optimal solution of suspension parameters (N/m) (N/m) (N/m) (N/m) (N-s/m) (N-s/m) 962031. 9 931072. 4 14363. 58 6947. 386 147128. 9 2455. 388 Table 6 Critical hunting speeds after optimization V1 (km/h) (l=0. 05) V2 (km/h) (l=0. 07) V3 (km/h) (l=0. 1) SNR 100/SNR 370 376 377 51. 46428 1. 9431.
Google Scholar