Preparation of Colloidal Silver Nanoparticles by Laser Ablation; Evaluation and Study on its Developed Applications

Article Preview

Abstract:

In this work we report the preparation of colloidal silver nanoparticles. In order to prepare the silver nanoparticles laser ablation method has been used.A silver coin as a target (purity 99.9 %) was ablated by a Q-Switched Nd:YAG laser with a fluence of about 91 mJ/cm2 at a repetition rate of 10 Hz at room temperature. In order to evaluate these particles transmission electron microscopy (TEM) and spectrophotometry (from UV to NIR) have been used. The average size of prepared nanoparticles is ~ 20 nm. The importance of morphology of nanoparticles has been investigated. Developed applications of silver nanoparticles have been studied,silver nanoparticles are considered as biocompatible and low in toxicity and have good potential for biological applications. Lately silver nanoparticles have found a novel approach in different fields of medicine, biology and industry.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

1409-1413

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jae Yong Song, Beom Soo Kim: Bioprocess Biosyst Eng Vol. 23 (2009), p.79.

Google Scholar

[2] Rahul B. Salunkhe, Satish V. Patil, Bipinchandra K. Salunke, Chandrashekhar D. Patil, Avinash M. Sonawane: Appl Biochem Biotechnol Vol. 165 (2011), p.221.

DOI: 10.1007/s12010-011-9245-8

Google Scholar

[3] A. Tripathy, Ashok M. Raichur, N. Chandrasekaran, T. C. Prathna, Amitava Mukherjee: J Nanopart Res Vol. 12 (2010), p.237.

Google Scholar

[4] R. G. Haverkamp, A. T. Marshall: J Nanopart Res Vol. 11 (2009), p.1453.

Google Scholar

[5] Yuan-Chih Chu, et al: Journal of Inorganic and Organometallic Polymers and Materials Vol. 15, No. 3 (2005), p.309.

Google Scholar

[6] V. S. Kovivchak, V. I. Dubovik, R. B. Burlakov: Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Vol. 3, No. 2 (2009), p.268.

Google Scholar

[7] R.M. Tilaki1, A. Iraji Zad, S.M. Mahdavi: Appl. Phys. A Vol. 84 (2006), p.215.

Google Scholar

[8] Claire M. Cobley, Sara E. Skrabalak, Dean J. Campbell, Younan Xia: Plasmonics Vol. 4 (2009), p.171.

Google Scholar

[9] Garima Singhal, Riju Bhavesh, Kunal Kasariya, Ashish Ranjan Sharma, Rajendra Pal Singh: J Nanopart Res Vol. 13 (2011), p.2981.

Google Scholar

[10] Nelson Durán, Priscyla D. Marcato, Roseli De Conti, Oswaldo L. Alves, Fabio T. M. Costa, Marcelo Brocchi: J. Braz. Chem. Soc. Vol. 21, No. 6 (2010), p.949.

Google Scholar

[11] Gholamreza Abdi, Hassan Salehi, Morteza Khosh-Khui: Acta Physiol Plant Vol. 30 (2008), p.709.

Google Scholar

[12] Priyanka Gajjar, Brian Pettee, David W Britt, Wenjie Huang, William P Johnson, Anne J Anderson: Journal of Biological Engineering (2009), doi: 10. 1186/1754-1611-3-9.

Google Scholar

[13] Jose Luis Elechiguerra, et al: Journal of Nanobiotechnology (2005), doi: 10. 1186/1477-3155-3-6.

Google Scholar

[14] Dattatri Nagesha, Harikrishna Devalapally, Srinivas Sridhar, Mansoor Amiji: Fundamental Biomedical Technologies Vol. 4 (2008), p.381.

Google Scholar

[15] Kim Sang Woo, et al: J. Microbiol. Biotechnol Vol. 19, No. 8 (2009), p.760.

Google Scholar

[16] ROZANOVA Nadejda, ZHANG JinZhong: Sci China Ser B-Chem Vol. 52, No. 10 (2009), p.1559.

Google Scholar

[17] Takahiro Hayasaka, et al: J Am Soc Mass Spectrom Vol. 21 (2010), p.1446.

Google Scholar

[18] Abhishek Dutta, Kartik Samala Naga, Vaibhav Netkar, Atanu Sen, Sridhar T. M: IFMBE Proceedings Vol. 14, Track. 20 (2006), p.3263.

Google Scholar

[19] Keuk-Jun Kim, Woo Sang Sung, Bo Kyoung Suh, Seok-Ki Moon, Jong-Soo Choi, Jong Guk Kim, Dong Gun Lee: Biometals Vol. 22 (2009), p.235.

DOI: 10.1109/icvc.1999.820956

Google Scholar

[20] M. Pollini, M. Russo, A. Licciulli, A. Sannino, A. Maffezzoli: J Mater Sci: Mater Med Vol. 20 (2009), p.2366.

DOI: 10.1007/s10856-009-3796-z

Google Scholar

[21] B. S. Necula, L. E. Fratila-Apachitei, A. Berkani, I. Apachitei, J. Duszczyk: J Mater Sci: Mater Med Vol. 20 (2009), p.339.

DOI: 10.1007/s10856-008-3589-9

Google Scholar

[22] M. Takeda, H. Tada, M. Kawai, Y. Sakurai, H. Higuchi, K. Gonda, T. Ishida, N. Ohuchi: ICBME 2008, Proceedings 23, (2009), p.2272.

DOI: 10.1007/978-3-540-92841-6_570

Google Scholar

[23] K. Madhumathi, P. T. Sudheesh Kumar, S. Abhilash, V. Sreeja, H. Tamura, K. Manzoor, S. V. Nair, R. Jayakumar: J Mater Sci: Mater Med Vol. 21 (2010), p.807.

DOI: 10.1007/s10856-009-3877-z

Google Scholar

[24] Humberto H. Lara, Nilda V. Ayala-Nu´n˜ez, Liliana del Carmen Ixtepan Turrent, Cristina Rodrı´guez Padilla: World J Microbiol Biotechnol Vol. 26 (2010), p.615.

DOI: 10.1007/s11274-009-0211-3

Google Scholar

[25] Aruna Jyothi Kora, J. Arunachalam: World J Microbiol Biotechnol Vol. 27 (2011) p.1209.

Google Scholar

[26] K. Abe, Y. Sanada, T. Morimpto: Journal of Sol-Gel Science and Technology Vol. 22 (2001), p.151.

Google Scholar

[27] James H. Johnston, Thomas Nilsson: J Mater Sci (2011), doi: 10. 1007/s10853-011-5882-0.

Google Scholar

[28] C. W. M. Yuen, C. W. Kan, Y. W. Wong: Fibers and Polymers Vol. 10, No. 5 (2009), p.606.

Google Scholar

[29] K.R. Catchpole, A. Polman: Optics Express Vol. 16, No. 26 (2008), p.21793.

Google Scholar

[30] Feng Zhang, Xiaolan Wu, Yuyue Chen, Hong Lin: Fibers and Polymers Vol. 10, No. 4 (2009), p.496.

Google Scholar

[31] F. Heidarpour, W. A. Wan Ab Karim Ghani, A. Fakhru'l-Razi, S. Sobri, V. Heydarpour, M. Zargar, M. R. Mozafari: Clean Techn Environ Policy Vol. 13 (2011), p.499.

DOI: 10.1007/s10098-010-0332-2

Google Scholar