[1]
Jing-Sheng Wang and Y-S Wu, Virtual boundary method for solving acoustic problems of open structure, Journal of ship mechanics, 10 (2006) 159-166.
Google Scholar
[2]
Z. S. Chen, G. Hofstetter and H. A. Mang, A symmetric Galerkin formulation of the boundary element method for acoustic radiation and scattering, J. Computational Acoustics. 5, (1997) 219-241.
DOI: 10.1142/s0218396x97000137
Google Scholar
[3]
Shande Li , Qibai Huang, An improved form of the hypersingular boundary integral equation for exterior acoustic problems, Eng. Anal. Boundary Elem. 34 (2010) 189-195.
DOI: 10.1016/j.enganabound.2009.10.005
Google Scholar
[4]
J. Claude Nédelec, Acoustic and electromagnetic equation, Ed. Applied Mathematical Sciences. Springer-Verlag (V. 144), N. Y , (2001).
Google Scholar
[5]
M. Carley, Scattering by quasi-symmetric pipes, J. Acoust. Soc. Am. 119 (2006) 817-823.
DOI: 10.1121/1.2159432
Google Scholar
[6]
Abdelmageed A. K., Efficient evaluation of modal Green's functions arising in EM scattering by bodies of revolution, Progress In Electromagnetics Research . 27 (2000) 337-356.
DOI: 10.2528/pier99061601
Google Scholar
[7]
B. Soenarko, A boundary element formulation for radiation of acoustic waves from axisymmetric bodies with arbitrary boundary conditions, J. Acoust. Soc. Am. 93 (1993) 631-639.
DOI: 10.1121/1.405482
Google Scholar
[8]
J. Priede and G. Gerbeth, Boundary-integral method for polidal axisymmetric AC magnetic fields, IEEE Trans. Magnetics. 42 (2006).
DOI: 10.1109/tmag.2005.861042
Google Scholar
[9]
W. Wang, N. Atalla and J. Nicolas, A boundary integral approach for acoustic radiation of axisymmetric bodies with arbitrary boundary conditions valid for all wave numbers, J. Acoust. Soc. Am. 101 (1997) 1468-1478.
DOI: 10.1121/1.418174
Google Scholar
[10]
P. Juhl, Axisymmetric integral formulation for non-axisymmetric boundary conditions, Report no. 47 (1991) The Acoustics Laboratory, Technical University of Denmark.
Google Scholar
[11]
M. Carley, The sound field of a rotor in stationary duct, J. Sound and Vibration 259 (2003) 1067-1079.
DOI: 10.1006/jsvi.2002.5131
Google Scholar
[12]
A.F. Seybert, B. Soenarko, F.J. Rizzo and D.J. Shippy, An advanced computational method for radiation and scattering of acoustic waves in three dimensions , J. Acoust. Soc. Am. 77 (1985) 362-368.
DOI: 10.1121/1.391908
Google Scholar
[13]
Beldi M., Recursion methods for accurate and efficient evaluation of Fourier coefficients of the Green's function and its derivatives, Internal report, MAI Laboratory, University Tunis El Manar (2010).
Google Scholar
[14]
L. Zarrouk, Galerkin-BEM for study of acoustic radiation by axisymmetric bodies, Ph. D thesis Engineering National School of Tunis, (publication to appear 2012).
Google Scholar
[15]
M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, N. Y, (1972).
Google Scholar
[16]
G. Fairweather, F.J. Rizzo, D.J. Shippy and Y.S. Wu, On the numerical solution of two- dimensional potential problems by an improved boundary integral equation method , J. Comput. Phys. 31 (1979) 96-112.
DOI: 10.1016/0021-9991(79)90064-0
Google Scholar
[17]
Toshio Fukushima: Fast computation of complete elliptic integrals and Jacobian elliptic functions. Celest. Mech. Dyn. Astr. 105 (2009) 305-328.
DOI: 10.1007/s10569-009-9228-z
Google Scholar
[18]
P.J. Davis and P. Rabinowitz , Methods of numerical integration. Computer Science and Applied Mathematics. Academic Press, N. Y (1984).
Google Scholar
[19]
M. Bonnet and M. Guiggiani, Direct evaluation of double singular integrals and new free terms in 2D (symmetric) Galerkin BEM. Comput. Methods Appl. Mech. Eng. 192 (2003) 2565-2596.
DOI: 10.1016/s0045-7825(03)00286-x
Google Scholar