Design and Fabrication of a Micro-Actuator Based on Electromagnetic Membrane Device

Article Preview

Abstract:

The purpose of this study is to develop a micro electro-magnetic actuator manufactured by MEMS-based fabrication and electroplating techniques. This actuator presented a novel technique in the electromagnetic fabrication and smaller physical size than the traditional counterparts for micro actuators and provides a faster response time and lower cost. A micro coil structure is released from FeCl3 etchant and bonded on a thin film (Parafilm”M”, Pechiney Plastic Packaging Inc.) to achieve an actuator-membrane structure. When an external AC power is applied to a micro coil, a magnetic field is created to attract and repel through an NdFeB permanent magnet, and the displacement of the membrane is increased as a current of AC power. The results show the measured magnetic field intensity weakens as the distance between the coil and the Gauss meter probe increases. However, it is observed that the magnetic field intensity does not increase linearly with the number of series coils, which is due to the distance between series coils.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

1451-1456

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998).

Google Scholar

[2] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature 382, 607 (1996).

Google Scholar

[3] Y. Sun and Y. Xia, Science 5601, 2176 (2002).

Google Scholar

[4] D. H. Gracias, J. Tien, T. L. Breen, C. Hsu, and G. M. Whitesides, Science 289, 1170 (2000).

Google Scholar

[5] E. Hao, K. L. Kelly, J. T. Hupp, and G. C. Schatz, J. Am. Chem. Soc. 124, 15182 (2002).

Google Scholar

[6] J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, and C. Chen, Nanotechnology 18, 105104 (2007).

Google Scholar

[7] A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, and M. Sastry, Langmuir. 19, 3550 (2003).

Google Scholar

[8] B. Nair and T. Pradeep, Crys. Growth Des. 2, 293 (2002).

Google Scholar

[9] T. K. Joerger, R. Joerger, E. Olsson, and C. G. Granqvist, Trends Biotechnol. 19, 15 (2001).

Google Scholar

[10] A. R. Shahverdi, S. Minaeian, H. R. Shahverdi, H. Jamalifar, and A. A. Nohi, Proc. Biochem. 42, 919 (2007).

DOI: 10.1016/j.procbio.2007.02.005

Google Scholar

[11] H. Zhu, J. Miao, B. Chen, Z. Wang, and W. Zhu, Microsystem Technology. 11, 1121-1126 (2005).

Google Scholar

[12] H. Xu, T. Ono, D. Y. Zhang and M. Esashi, Microsystem Technology, 12, 883-890 (2006).

Google Scholar

[13] H. K. Ma, B. R. How, H. Y. Lin, M. Y. Lin, J. J. Gao and M. C. Kou, Microsystem Technology, 14, 1001-1007 (2008).

Google Scholar

[14] C. Liu, T. Tsao, Y. C. Tai and C. M. Ho, Proceeding of IEEE MEMS, 25-28 (1994).

Google Scholar

[15] L. K. Lagorce, O. Brand, M. G. Allen, IEEE J. MEMS. 8, 2-9 (1999).

Google Scholar

[16] A.I. Hickerson, D. Rinderkecht, M. Gharib, Exp. Fluid. 38, 534-540 (2005).

Google Scholar

[17] A.I. Hickerson, M. Gharib, J. Fluid Mech. 555, 141-148 (2006).

Google Scholar

[18] C.Y. Yeo, W.K. Shim, E. Wouterson, T. Li and J. Ma, Funct. Mater. Lett. 1, 225-228 (2008).

Google Scholar

[19] A. Borzi, G. Propst, Numerical investigation of the Liebau Phenomenon. Math Phys., 54, 1050-1072 (2003).

Google Scholar