[1]
Soykan, H.S. (2007). Low-temperature fabrication of steatite ceramics with boron oxide addition. Ceramics International. 33: 911-914.
DOI: 10.1016/j.ceramint.2006.02.001
Google Scholar
[2]
Kingery, W. D, Bowen, H.K., Uhlmann, D.R. (1976) . Introduction to Ceramics, Wiley & Sons. P. 307.
Google Scholar
[3]
Kharitonov, F., Shapiro, L.E., (1989). Glass Ceram. 46 (3/4) 162-165.
Google Scholar
[4]
Ctibor, P., Sedlacek, J., Neufuss, K., Dubsky, J., & Chraska, P. (2005). Dielectric properties of plasma-sprayed silicates. Ceram. Int. 31(2) 315-321.
DOI: 10.1016/j.ceramint.2004.05.022
Google Scholar
[5]
Witold, M., Dorota, N.W., & Krystyna, P. (2004). Correlation between MgSiO3 phases and mechanical durability of steatite ceramics.
Google Scholar
[6]
Reynard, B., Bass, J.D., & Jackson, J.M. (2008). Rapid identification of steatite-enstatite polymorphs at various temperatures. Journal of European Ceramics Society. 28: pp.2459-2462.
DOI: 10.1016/j.jeurceramsoc.2008.03.009
Google Scholar
[7]
Takher, E.A., Fedoseeva, T.I., Kellerman, & Popilskii, R. (1974). Glass Ceramics. 31(1/2) pp.108-111.
Google Scholar
[8]
Vela, E., Peiteado, M., Garcia, F., Caballero, A.C., Fernandez, J.F. (2007). Sintering behavior of steatite materials with barium carbonate flux. Ceramics International 33 (2007) 1325-1329.
DOI: 10.1016/j.ceramint.2006.04.015
Google Scholar
[9]
Brown, W.L. & Smith, J.V. (1963). High temperature X-ray studies on the polymorphism of MgSiO3. Kristallogr. 118. Pp. 186-212.
Google Scholar
[10]
Lee, W.E. & Heuer, A.H. (1987). On the polymorphism of enstatite. J. Am. Ceram. Soc. 70 (5) Pp. 349-360.
Google Scholar
[11]
Huang, C.M., Kuo, D.H., Kim, Y.J., & Kriven, W.M. (1994). Phase stability of chemically derived enstatite (MgSiO3) powders. J. Am. Ceram. Soc. 77 (101) 2625-2631.
DOI: 10.1111/j.1151-2916.1994.tb04653.x
Google Scholar
[12]
Bloor, E.G. (1964). Conversion in steatite ceramics. J. Br. Ceram. Soc. 63 pp.309-316.
Google Scholar
[13]
Thurnauer, H., & Rodriguez, A.R. (1942). Notes on the constitution of steatite. J. Am. Ceram. Soc. 25 (15) pp.443-445.
Google Scholar
[14]
Vereshchagin, V.I., & Gurina, V.N. (1997) Polymorphism of magnesium metasilicate and its role in the production of no aging steatite ceramics. Glass Ceram. 54 (11/12) pp.365-367.
DOI: 10.1007/bf02768184
Google Scholar
[15]
Morimoto, N., Appleman, E.D., & Evans, H.T. (1960). The crystal structures of clinoenstatite and pigeonite. Zeltschrift f. Krist. 114. Pp. -120-147.
DOI: 10.1524/zkri.1960.114.1-6.120
Google Scholar
[16]
Sarver, J.F. & Hummel, F.A. . (1962). Stability relations of magnesium metasilicate polymorphs. J. Am. Ceram. Soc. 55, Pp. 152-156.
DOI: 10.1111/j.1151-2916.1962.tb11110.x
Google Scholar
[17]
Avetikov, V.G., Borisova, A.Y.U., & Zinko, E. (1970). Sintering range of steatite materials. Glass and ceramics. 27 (5/6): 294: 296.
DOI: 10.1007/bf00676032
Google Scholar
[18]
Smyth, J.R. (1971) Protoenstatite-crystal-structure refinement at 1100°C. Zeitschrif Fur Kristallographie Kristallgeometrie Kristallphysik Kristallchemie. 134: 262.
DOI: 10.1524/zkri.1971.134.3-4.262
Google Scholar
[19]
Peicang, X., & Xiayoun, Z. (1988). Mineral physical characteristics of pyroxene phase transformation and a probe into the mechanism of talc porcelain aging. Acta Mineral. Sin. 8 (2) 104-112.
Google Scholar