Densification Behavior of Steatite by Two Stage Sintering

Article Preview

Abstract:

Structural materials, such as steatite-based ceramic is considered one of the most useful engineering ceramic in place of alumina as a cost-effective way to meet performance requirements. The objective of the research here is to develop a dense body which exhibits good properties as mentioned by the two stage sintering method. Steatite powders used in this work were undoped steatite, steatite doped 20wt% ZnO and steatite doped 20wt% MnO2. The green samples were cold-isostatically pressed and pressureless sintered at temperatures ranging from 950°C to 1200°C at heating rate of 10°C/min through two stage sintering before cooling down to room temperature. The results revealed an improvement in the densification of all the steatites through two stage sintering compared to the conventional sintering. At 1200°C, the steatite bodies with 20 wt% ZnO compositions achieved maximum bulk density of 2.79 g/cm3 which is 10.3% higher than the same steatite doped bodies which exhibited best result when it was conventionally sintered. As a result of bulk density improvement, two stage sintering exhibited outstanding effects in enhancing Young’s modulus and hardness of the steatite body.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

194-201

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Soykan, H.S. (2007). Low-temperature fabrication of steatite ceramics with boron oxide addition. Ceramics International. 33: 911-914.

DOI: 10.1016/j.ceramint.2006.02.001

Google Scholar

[2] Kingery, W. D, Bowen, H.K., Uhlmann, D.R. (1976) . Introduction to Ceramics, Wiley & Sons. P. 307.

Google Scholar

[3] Kharitonov, F., Shapiro, L.E., (1989). Glass Ceram. 46 (3/4) 162-165.

Google Scholar

[4] Ctibor, P., Sedlacek, J., Neufuss, K., Dubsky, J., & Chraska, P. (2005). Dielectric properties of plasma-sprayed silicates. Ceram. Int. 31(2) 315-321.

DOI: 10.1016/j.ceramint.2004.05.022

Google Scholar

[5] Witold, M., Dorota, N.W., & Krystyna, P. (2004). Correlation between MgSiO3 phases and mechanical durability of steatite ceramics.

Google Scholar

[6] Reynard, B., Bass, J.D., & Jackson, J.M. (2008). Rapid identification of steatite-enstatite polymorphs at various temperatures. Journal of European Ceramics Society. 28: pp.2459-2462.

DOI: 10.1016/j.jeurceramsoc.2008.03.009

Google Scholar

[7] Takher, E.A., Fedoseeva, T.I., Kellerman, & Popilskii, R. (1974). Glass Ceramics. 31(1/2) pp.108-111.

Google Scholar

[8] Vela, E., Peiteado, M., Garcia, F., Caballero, A.C., Fernandez, J.F. (2007). Sintering behavior of steatite materials with barium carbonate flux. Ceramics International 33 (2007) 1325-1329.

DOI: 10.1016/j.ceramint.2006.04.015

Google Scholar

[9] Brown, W.L. & Smith, J.V. (1963). High temperature X-ray studies on the polymorphism of MgSiO3. Kristallogr. 118. Pp. 186-212.

Google Scholar

[10] Lee, W.E. & Heuer, A.H. (1987). On the polymorphism of enstatite. J. Am. Ceram. Soc. 70 (5) Pp. 349-360.

Google Scholar

[11] Huang, C.M., Kuo, D.H., Kim, Y.J., & Kriven, W.M. (1994). Phase stability of chemically derived enstatite (MgSiO3) powders. J. Am. Ceram. Soc. 77 (101) 2625-2631.

DOI: 10.1111/j.1151-2916.1994.tb04653.x

Google Scholar

[12] Bloor, E.G. (1964). Conversion in steatite ceramics. J. Br. Ceram. Soc. 63 pp.309-316.

Google Scholar

[13] Thurnauer, H., & Rodriguez, A.R. (1942). Notes on the constitution of steatite. J. Am. Ceram. Soc. 25 (15) pp.443-445.

Google Scholar

[14] Vereshchagin, V.I., & Gurina, V.N. (1997) Polymorphism of magnesium metasilicate and its role in the production of no aging steatite ceramics. Glass Ceram. 54 (11/12) pp.365-367.

DOI: 10.1007/bf02768184

Google Scholar

[15] Morimoto, N., Appleman, E.D., & Evans, H.T. (1960). The crystal structures of clinoenstatite and pigeonite. Zeltschrift f. Krist. 114. Pp. -120-147.

DOI: 10.1524/zkri.1960.114.1-6.120

Google Scholar

[16] Sarver, J.F. & Hummel, F.A. . (1962). Stability relations of magnesium metasilicate polymorphs. J. Am. Ceram. Soc. 55, Pp. 152-156.

DOI: 10.1111/j.1151-2916.1962.tb11110.x

Google Scholar

[17] Avetikov, V.G., Borisova, A.Y.U., & Zinko, E. (1970). Sintering range of steatite materials. Glass and ceramics. 27 (5/6): 294: 296.

DOI: 10.1007/bf00676032

Google Scholar

[18] Smyth, J.R. (1971) Protoenstatite-crystal-structure refinement at 1100°C. Zeitschrif Fur Kristallographie Kristallgeometrie Kristallphysik Kristallchemie. 134: 262.

DOI: 10.1524/zkri.1971.134.3-4.262

Google Scholar

[19] Peicang, X., & Xiayoun, Z. (1988). Mineral physical characteristics of pyroxene phase transformation and a probe into the mechanism of talc porcelain aging. Acta Mineral. Sin. 8 (2) 104-112.

Google Scholar