Formation Mechanism of Ceria Particles by Spray Pyrolysis

Article Preview

Abstract:

Ceria-based materials are widely used in industrial applications such as catalyst supports, catalysts and electrolytes. Various applications require different morphological particles. Spray pyrolysis (SP) is a well-known process for ceria particle fabrication because SP has the advantages of simple and continuous process. Although various studies have discussed the particle morphology formation of SP, some questions are still unclear. In order to solve these questions, this study investigates the morphology of ceria particles from various precursors using SP. By combining the experimental data of scanning electron microscopy, transmission electron microscopy and focused ion beam, the result suggests that the particle formation mechanism is highly correlated with factors of hydrophilic-hydrophobic properties of precursors. Therefore, the morphology mechanism of SP for the ceria particles is proposed .

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

169-174

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Hennings and R. Reimert: Appl. Catal. A-Gen., Vol. 325 (2007), p.41.

Google Scholar

[2] G.Z. Chen, F.F. Zhu, X. Sun, S.X. Sun and R.P. Chen: CrystEngComm, Vol. 13 (2011), p.2904.

Google Scholar

[3] A. Trovarelli: Catalysis Reviews, Vol. 38 (1996), p.439.

Google Scholar

[4] N.Q. Minh: J. Am. Ceram. Soc., Vol. 76 (1993), p.563.

Google Scholar

[5] F.Y. Wang, S.Y. Chen and S.F. Cheng: Electrochem. Commun., Vol. 6 (2004), p.743.

Google Scholar

[6] R.N. Blumenth, F.S. Brugner and J.E. Garnier: J. Electrochem. Soc., Vol. 120 (1973), p.1230.

Google Scholar

[7] A. Trovarelli, F. Zamar, J. Llorca, C. deLeitenburg, G. Dolcetti and J.T. Kiss: J. Catal., Vol. 169 (1997), p.490.

Google Scholar

[8] C.Y. Cao, Z.M. Cui, C.Q. Chen, W.G. Song and W. Cai: J. Phys. Chem. C, Vol. 114 (2010), p.9865.

Google Scholar

[9] N. Phonthammachai, M. Rumruangwong, E. Gulari, A.M. Jamieson, S. Jitkarnka and S. Wongkasemjit: Colloid. Surface. A, Vol. 247 (2004), p.61.

DOI: 10.1016/j.colsurfa.2004.08.030

Google Scholar

[10] S. Piñol, M. Najib, D.M. Bastidas, A. Calleja, X.G. Capdevila, M. Segarra, F. Espiell, J.C. Ruiz-Morales, D. Marrero-Lopez and P. Nunez: J. Solid. State Electr., Vol. 8 (2004), p.650.

DOI: 10.1007/s10008-004-0506-0

Google Scholar

[11] T. Masui, K. Fujiwara, K. Machida, G. Adachi, T. Sakata and H. Mori: Chem. Mater., Vol. 9 (1997), p.2197.

Google Scholar

[12] L.A. Bruce, M. Hoang, A.E. Hughes and T.W. Turner: Appl. Catal. A-Gen., Vol. 134 (1996), p.351.

Google Scholar

[13] C.Y. Chen, T.K. Tseng, C.Y. Tsay and C.K. Lin: J. Mater. Eng. Perform., Vol. 17 (2008), p.20.

Google Scholar

[14] S.J. Shih, L.Y.S. Chang, C.Y. Chen, K.B. Borisenko and D.J.H. Cockayne: J. Nanopart. Res., Vol. 11 (2009), p.2145.

Google Scholar

[15] S.J. Shih, Y. Huang, Y.R. Lyu and C.Y. Chen: J. Nanosci. Nanotechnol., Vol. 9 (2009), p.3898.

Google Scholar

[16] G.L. Messing, S.C. Zhang and G.V. Jayanthi: J. Am. Ceram. Soc., Vol. 76 (1993), p.2707.

Google Scholar

[17] C.Y. Chen, Y.R. Lyu, C.Y. Su, H.M. Lin and C.K. Lin: Surf. Coat. Tech., Vol. 202 (2007), p.1277.

Google Scholar

[18] H.S. Kang, J.R. Sohn, Y.C. Kang, K.Y. Jung and S.B. Park: J. Alloy. Compd., Vol. 398 (2005), p.240.

Google Scholar

[19] B.T. Kilbourn 1993 A lanthanide lantology, (Mountain Pass: Molycorp Inc. ) p.4.

Google Scholar

[20] A. Seidell, in Solubilities of inorganic and organic substances, D. Van Nostrand Company (1919).

Google Scholar