Synthesis and Characterization of SnO2/N-Doped TiO2 Nanoparticles

Article Preview

Abstract:

SnO2/N – doped TiO2 photocatalysts were prepared by the modified sol-gel method. Tin tetrachloride pentahydrate, urea and polyethylene glycol were used as precursors and calcined at a temperature of 500 °C for 2 h for making powders. Different interstitial amount of nitrogen additives were in range of 0 to 40 mol%N. The XRD patterns show the TiO2 nanocomposites are anatase phase. It was also apparent that doped nitrogen has an effect on crystallite size and band gap energy on absorbed light wavelength leading of enhancement of photocatalytic activity of TiO2 composite nanoparticles. The result showed 20 mol%N of TiO2 nanocomposites exhibited high photocatalytic activity, redshift in adsorption edge and a small crystallite size.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

22-26

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, T.N. Rao and D.A. Tryk: J Photoch Photobio C. Vol. 1 (2000), pp.1-21.

Google Scholar

[2] M. Gratzel: J Photoch Photobio C. Vol 4 (2003), p.145–153.

Google Scholar

[3] M. Gohin, E. Allain, N. Chemin and I. Maurin: J Photoch Photobio A. Vol. 216 (2010), p.142–148.

Google Scholar

[4] A.R. Ranga and V. Dutta: Sol Energ Mat Sol C. Vol. 91 (2007), p.1075–1080.

Google Scholar

[5] W. Chen, D. Hua, T. Jun-ying and Z. Ji-mei: Trans Nonferrous Met SOC China. Vol. 16 (2006), pp.728-731.

Google Scholar

[6] Y. Wang, G. Zhou, T. Li, W. Qiao and Y. Li: Catal Commu. Vol. 10 (2009), p.412–415.

Google Scholar

[7] J. Yuan, M. Chen, J. Shi and W. Shangguan: Int J of Hydrogen Energ. Vol. 31 (2006), p.1326– 1331.

Google Scholar

[8] P. Cheng, C. Deng, M. Gu and X. Dai: Mater Chem Phys. Vol. 107 (2008), p.77–81.

Google Scholar

[9] S.H. Hwang, C. Kim and J. Jang: Catal Commu. Vol. 12 (2011), p.1037–1041.

Google Scholar

[10] S. Bu, Z. Jin, X. Liu, L. Yang and Z. Cheng: Mater Chem Phys. Vol. 88 (2004), p.273–279.

Google Scholar

[11] D. Tristantini and R. Mustikasari: Int J Eng Tech. Vol 11 (2011), No: 2.

Google Scholar

[12] N. Arconada, A. Duram, S. Suarez, R. Portela, J.M. Coronado, B. Sanchez and Y. Castro: Appl Catal B-Environ. Vol. 86 (2009), p.1–7.

Google Scholar

[13] R. Rattanakam and S. Supothina: Res Chem Intermed. Vol. 35 (2009), p.263–269.

Google Scholar

[14] L. Sikong, B. Kongreong, D. Kantachote and W. Sutthisripok: Energ Res J 1. Vol. 2 (2010), pp.120-125.

Google Scholar

[15] J. Yaithongkum, K. Kooptarnond, L. Sikong and D. Kantachote: Adv Mater Res. Vol. 214 (2011), pp.212-217.

Google Scholar

[16] J. Geng, D. Yang, J. Zhu, D. Chen and Z. Jiang: Mater Res Bull. Vol. 44 (2009), p.146–150.

Google Scholar