Effects of Temperature, Strain Rate and Grain Size on Superplastic Behavior of Magnesium

Article Preview

Abstract:

The influence of temperature, grain size and strain rate on superplasticity of magnesium is investigated. Different approaches are compared along with their experimental results to show the variation in the amount of superplasticity by varying above mentioned parameters. At room temperature magnesium alloys usually have poor formability but recent studies of some alloys such as ZE10, AZ31, AZ61 AZ60, AZ80 and AZ91 are pointing that by varying the temperature along with grain size and strain rate improved formability is possible or even superplastic forming of these alloys can be achieved to meet the demands of automotive, aircraft and other weight conscious industries.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

27-34

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. R. Agnew and O. Duygulu: Mater. Sci. Forum Vol. 419-422 (2003), p.177.

Google Scholar

[2] E. Aghion, B. Bronfin and D. Eliezer: Mater. Proc. Tech. Vol. 117 (2001), p.381.

Google Scholar

[3] H. Friedrich and S. Schumann: Mater. Proc. Tech. Vol. 117 (2001), p.276.

Google Scholar

[4] F. Abu-Farha and M. Khraisheh: Proceedings of the 8th ESAFORM Conference on Mater ming, Cluj-Napoca, Romania, p.627, April 27-29 (2005).

Google Scholar

[5] F. K. Abu-Farha: Ph.D. dissertation, University of Kentucky, (2007).

Google Scholar

[6] Meyers and Chawla: Mechanical Metallurgy Principles and Applications, Prentice Hall, (1984).

Google Scholar

[7] F. Abu-Farha, N. Rawashdeh and M. Khraisheh: Mater. Sci. Forum Vol. 551-552, (2007), p.219.

Google Scholar

[8] C. Chang, C. Lee and J. Huang: Scripta Materialia Vol. 51 (2004), p.509.

Google Scholar

[9] P. Cavaliere and P. Marco: Mater. Sci. Vol. 41 (2006), p.3459.

Google Scholar

[10] J. Kaneko, M. Sugamata, M. Numa, Y. Nishikawa and H. Takada: J. Japan Inst. of Metals Vol. 64 (2000), p.141.

Google Scholar

[11] B.L. Mordike and T. Ebert: Mater. Sci. and Engg. Vol. A302 (2001), p.37.

Google Scholar

[12] H. Furuya, N. Kogiso, S. Matunaga and K. Senda: Mater. Sci. Forum Vol. 350 (2000), p.341.

Google Scholar

[13] A. Mwembela, E.B. Konopleva and H.J. McQueen: Scripta Materialia Vol. 37 (1997), p.1789.

DOI: 10.1016/s1359-6462(97)00344-8

Google Scholar

[14] E. Doege and K. Droder: J. Mater. Proc. Tech. Vol. 115 (2001), p.14.

Google Scholar

[15] F. Abu-Farhaa and M. Khraisheh: Proceedings of 7th Int. Conference on Magnesium, Dresden, Germany, Wiley-VCH Verlag, p.399, (2006).

Google Scholar

[16] F. Abu-Farha and M. Khraisheh: J. Adv. Engg. Vol. 9 (2007), p.777.

Google Scholar

[17] P. Cavaliere and P. Marco: Mater. Proc. Tech. Vol. 184 (2007), p.77.

Google Scholar

[18] M. K. Khraisheh: Engg. Mater. and Tech. Vol. 122 (2000), p.93.

Google Scholar

[19] N. V. Thuramalla and M. K. Khraisheh: Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, Elsevier, Vol. 1 (2003), p.683.

Google Scholar

[20] M. K. Khraisheh: Inter. J. of Plasticity Vol. 13, no. 1-2 (1997) p.143.

Google Scholar

[21] A. Dutta and A.K. Mukherjee: Mater. Sci. and Engg. Vol. A157 (1992), p.9.

Google Scholar

[22] T.R. McNelley, E.W. Lee and M.E. Mills: Meta N. Trans. Vol 17A (1986), p.1035.

Google Scholar

[23] R.Z. Valiev, N.A. Krasilnikov and N.K. Tsenev: Mater. Sci. Eng. Vol. 137 (1991), p.35.

Google Scholar

[24] A. Ben-Artzy, A. Shtechman, A. Bussiba, Y. Salah, S. Ifergan, M. Kupiec and R. Grinfeld: Magnesium Technology Proceedings of the TMS Annual Meeting, San Diego, California, p.259 (2003).

Google Scholar

[25] A. Yamashita, Z. Horita and T.G. Langdon: Mater. Sci. Vol. 300 (2001), p.142.

Google Scholar

[26] H.P. Pu, F.C. Liu and C. Huang: Metal. and Mater. Trans. Vol. 26 (1993), p.1153.

Google Scholar

[27] H.P. Pu and J.C. Huang: Scripta Metallurgica et Materialia, Vol. 28 (1993), p.1125.

Google Scholar

[28] M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi: Scripta Materialia, Vol. 36, (1997), p.681.

Google Scholar

[29] M. Mabuchi, M. Asahina, T. Iwasaki and H. Higashi: Mater. Sci. and Tech. Vol. 13 (1997), p.825.

Google Scholar

[30] Wang Zhongjun, Wang Zhaojing and Zhu Jing: Adv. Mater. Letters Vol. 02 (2011), p.113.

Google Scholar

[31] L. Ying, L.I. Yuan-yuan, Chen Wei-pin, Zhang Wen and Luo Zhang-qiang: Mater. for Mech. Engg (2010).

Google Scholar

[32] J.K. Solberg, J. Torklep, O. Bauger and H. Gjestland: Mater. Sci. Eng. Vol. 134 (1991), p.1201.

Google Scholar

[33] M. Mabuchi, K. Kubota and K. Higashi: Mater. Trans. Tech. Vol. 36 (1995), p.1249.

Google Scholar

[34] H.K. Lin and J.C. Huang: Mater. Sci. Engg. Vol. 402 (2002), p.250.

Google Scholar

[35] R.G. Chang (under the guidance of J.W. Yeh): Master Thesis, Tsing Hua University (2000).

Google Scholar

[36] J. Kaneko, M. Sugamata and K. Higashi: Mater. Trans. Vol. 304 – 306, (1999), p.85.

Google Scholar

[37] H. Watanabe, T. Mukai, K. Ishikawa, Y. Okanda and K. Higashi: J. Jpn. Inst. Light Metals Vol. 49 (1999), p.401.

Google Scholar

[38] A. Bussiba, A.B. Artzy, A. Shtechman, S. Iftergan and M. Kupiec: Mater. Sci. Eng. Vol. 302 (2001), p.56.

Google Scholar

[39] H. Watambe, H. Tsutsui, T. Mukai, K. Ishikawa, Y. Okanda, M. Kohzu and K. Higashi: Mater. Sci. Forum 350 -351 (2000), p.171.

DOI: 10.4028/www.scientific.net/msf.350-351.171

Google Scholar

[40] H. Watambe, T. Mukai and K. Higashi: Scr. Mater. Vol. 40 (1999), p.477.

Google Scholar

[41] H. Watambe, T. Mukai and K. Higashi: Mater. Sci. Forum 304-306 (1999), p.303.

Google Scholar

[42] H. Watambe, T. Mukai, M. Mabuchi and K. Higashi: Sci. Mater. Vol. 41(1999), p.209.

Google Scholar

[43] T.C. Lowe and R.Z. Valiev: JOM Vol. 52 (4) (2000), p.27.

Google Scholar

[44] K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon: Mater. Sci. Eng. Vol. 281 (2000), p.82.

Google Scholar

[45] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater. Vol. 47 (1999), p.579.

Google Scholar

[46] J.A. del Valle, F. Carren, O.A. Ruano: Acta Materialia Vol. 54 (2006), p.4247.

Google Scholar

[47] W. J. Kimi, S. W. Chungi, C. S. Chungi and D. Kum: Acta Materialia Vol. 49 (2001), p.3337.

Google Scholar

[48] Y. Kwon, N. Saito and I. Shigematsu: J. Mater. Sci. Let. Vol. 21 (2001), p.1473.

Google Scholar

[49] R. Zettler, A. Blanco J. Santos and S. Marya: Magn. Tech. TMS. (2005), p.409.

Google Scholar

[50] P. Cavaliere and P. Marco: Mater. Sci. Vol. 41 (2006), p.3459.

Google Scholar

[51] H. Watambe, T. Mukai, M. Kohzu, S. Tanable and K. Higashi: Sci. Mater. Vol. 47 (1999), p.3753.

Google Scholar