Metallurgical Studies on the Friction Stir Welding of Dissimilar A356 and A413 Alloys

Article Preview

Abstract:

Friction stir welding is a technique useful for joining aluminum alloys that are difficult to weld. In recent years, however the focuses has been on welding dissimilar aluminum alloys, and analyze their mechanical properties and micro-structural characteristics. In the present study, the less investigated welding of cast aluminum alloys is considered. Cast aluminum alloys, A356 and A413, commonly used in automotive and aerospace industries, were friction-stir welded and their mechanical properties and micro-structural characteristics were analyzed. On testing their welded region, no welding defects were observed. The welded region exhibited a maximum tensile strength of 90 N/mm2 and Vickers micro-hardness of 56.8. The micro-structural observations at the nugget region revealed a refined grain structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

345-349

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Kciuk: Journal of Achievements in Materials and Manufacturing Engineering, Vol. 17 (1-2) (2006) pp.185-188.

Google Scholar

[2] T. Venugopal, K. Srinivasa Rao, K. Prasad Rao: Transactions of Indian Institute of Metallurgy, Vol. 57 (6) (2004) pp.659-663.

Google Scholar

[3] P.M.G.P. Moreira, T. Santos, S.M.O. Tavares, V. Richter-Trummer, P. Vilaça, P.M.S.T. de Castro: Materials and Design 30 (2009) p.180–187.

DOI: 10.1016/j.matdes.2008.04.042

Google Scholar

[4] W.M. Thomas, E. D Nicholas: Materials & Design, 18 (1997) p.269–273.

Google Scholar

[5] N. Shanmuga Sundaram, N. Murugan: Material and design 31 (2010) pp.4184-4193.

Google Scholar

[6] P. Cavaliere, F. Panella: Journal of Materials Processing Technology 206 (2008) p.249–255.

Google Scholar

[7] J. Tsujino, K. Hidai, A. Hasegawa, R. Kanai, H. Matsuura, K. Matsushima: Ultrasonics 40 (2002) p.371–374.

DOI: 10.1016/s0041-624x(02)00124-5

Google Scholar

[8] U. Kamachi Mudali, BM. Ananda Rao, K. Shanmugam, R. Natarajan, B. Raj: Journal of Nuclear Materials 321 (2003) p.40– 48.

DOI: 10.1016/s0022-3115(03)00194-6

Google Scholar

[9] K. Matsugi, Y. Wang, T. Hatayama, O. Yanagisawa, K. Syakagohri : Journal of Material Process Technology 135 (2003) p.75–82.

Google Scholar

[10] H. Khalid, G.D. Janaki Ram, G. Phanikumar, K. Prasad Rao: Material and Design (2010) pp.2375-2380.

Google Scholar

[11] Ju Kang, Ui-Dong U, Uo-Hong Luan, Chun-lin Dong, Miao He: Corrosion Science 52(2010) pp.620-626.

Google Scholar

[12] LE. Murr: Journal of Materials Engineering and Performances 11665-010-9598-0.

Google Scholar

[13] P. Cavaliere, A. De Santis F. Panella. A. Squillace: Materials and Design 30 (2009) p.609–616.

Google Scholar

[14] M. Jayaraman, R. Sivasubramanian, V. Balasubramanian: Material and Design (2010) pp.4567-4576.

Google Scholar

[15] L. Karthikeyan, V.S. Senthil Kumar, V. Balasubramanian, and Arul S : Materials Letters, Vol. 64 (2010) pp.301-304.

Google Scholar

[16] ASTM E8M-04. Standard test methods for tension testing of metallic materials. ASTM International; (2006).

Google Scholar

[17] Huseyin Uzun, Claudio Dalle Donne, Alberto Argagnotto, Tommas Ghidini, Carla Gambaro: Materials & Design, Vol. 26 (1) (2005) pp.41-46.

DOI: 10.1016/j.matdes.2004.04.002

Google Scholar

[18] M. Ghosh, K. Kumar, S.V. Kailas, A.K. Ray Materials and Design 31 (2010) 3033–3037.

Google Scholar

[19] ML. Santella, T. Engstrom, D. Storjohann, TY. Pan. Scripta Mater 53 (2006)p.201–206.

Google Scholar

[20] Z.Y. Ma: Metallurgical and Materials Transactions A, Vol. 39A, (2008) pp.642-57.

Google Scholar