[1]
T.S. Prasanna Kumar, A serial solution for the 2-D inverse heat conduction problem for estimating multiple heat flux components, Numer. Heat Transfer, Part B. 45 (2004) 541-563.
DOI: 10.1080/10407790490277940
Google Scholar
[2]
T.S. Prasanna Kumar, H.C. Kamath, Estimation of multiple heat flux components at the metal/mold interface in bar and plate aluminium alloy castings, Metall. Mater. Trans. B, 35 (2004) 575-585.
DOI: 10.1007/s11663-004-0056-y
Google Scholar
[3]
S. Arunkumar, K.V. Sreenivas Rao, T.S. Prasanna Kumar, Spatial variation of heat flux at the metal–mold interface due to mold filling effects in gravity die-casting, Int. J. Heat Mass Transfer, 51 (2008) 2676-2685.
DOI: 10.1016/j.ijheatmasstransfer.2007.10.020
Google Scholar
[4]
K. Babu, T.S. Prasanna Kumar, Mathematical modeling of surface heat flux during quenching, Metall. Mater. Trans. B, 41 2010) 214-224.
DOI: 10.1007/s11663-009-9319-y
Google Scholar
[5]
K. Babu, T.S. Prasanna Kumar, Estimation and analysis of surface heat flux during quenching in CNT nanofluids, J. Heat Transfer, 133 (2011) 071501.
DOI: 10.1115/1.4003572
Google Scholar
[6]
K. Babu, T.S. Prasanna Kumar, Effect of CNT concentration and agitation on surface heat flux during quenching in CNT nanofluids, Int. J. Heat Mass Transfer, 54 (2011) 106-117.
DOI: 10.1016/j.ijheatmasstransfer.2010.10.003
Google Scholar
[7]
M. Cheng, J. Cheng, S.Q. Yuan, F. Zhao, Studies on the heat transfer behaviour of the interface between workpiece and media in the quenching process, Acta Metall. Sinica, 10 (1997) 479-484.
Google Scholar
[8]
M. Sedighi, C.A. McMahon, The influence of quenchant agitation on the heat transfer coefficient and residual stress development in the quenching of steels, J. Engg. Manuf., 214 (2000) 555-567.
DOI: 10.1243/0954405001518251
Google Scholar
[9]
Cheng Heming, Huang Xieqing, Xie Jianbin, Comparison of surface heat-transfer coefficients between various diameter cylinders during rapid cooling. J. Mater. Process. Technol. 138 (2003) 399-402.
DOI: 10.1016/s0924-0136(03)00106-7
Google Scholar
[10]
P.R. Woodard, S. Chanrasekar, H.T.Y. Yang, Analysis of temperature and microstructure in the quenching of steel cylinders, Metall. Mater. Trans. B, 30 (1999) 815-822.
Google Scholar
[11]
K. Narayan Prabu, Peter Fernandes, Effect of surface roughness on metal/quenchant interfacial heat transfer and evolution of microstructure, Mater. Des, 28 (2007) 544-550.
DOI: 10.1016/j.matdes.2005.08.005
Google Scholar
[12]
D. Li, M.A. Wells, S.L. Cockcroft, E. Caron, Effect of sample start temperature during transient boiling heat water heat transfer, Metall. Mater. Trans. B, 38 (2007) 901-910.
DOI: 10.1007/s11663-007-9091-9
Google Scholar