[1]
F. Magoules, I. Harari (Editors), Special issue on absorbing boundary conditions, Comput. Method Appl. Mech. Engrg. 195 (2006) 3354-3902
Google Scholar
[2]
R. J. Astley, A finite element, wave envelope formulation for acoustical radiation in moving flows, Journal of Sound and Vibration, 103 (1985) 471-485.
DOI: 10.1016/s0022-460x(85)80016-x
Google Scholar
[3]
W. Eversman, Mapped infinite wave envelope elements for acoustic radiation in a uniformly moving medium, Journal of Sound and Vibration, 224 (1999) 665-687.
DOI: 10.1006/jsvi.1999.2235
Google Scholar
[4]
T. Mertens, P. Gamallo, R.J. Astley, Ph Bouillard, A mapped finite and infinite partition of unity method for convected acoustic radiation in axisymmetric domains, Comput. Method Appl. Mech. Engrg. 197 (2008) 4273-4283.
DOI: 10.1016/j.cma.2008.05.006
Google Scholar
[5]
T. W. Wu and L. Lee, A direct boundary integral formulation for acoustic radiation in a subsonic uniform flow, Journal of Sound and Vibration 175 (1994) 51-63.
DOI: 10.1006/jsvi.1994.1310
Google Scholar
[6]
Pantazopoulou P., Rice H. and Carley M., Boundary integral methods for scattering in non-unoform flows, 11th AIAA/CEAS Aeroacoustics Conference, 23-25May 2005, Monterey,Clifornia,V.4 2315-2327
DOI: 10.2514/6.2005-2985
Google Scholar
[7]
Anurag Agarwal and Philip J. Morris, Prediction Method for Broadband Noise from Unsteady Flow in a Slat Cove, AIAA Journal 44 (2006) 301-310
DOI: 10.2514/1.12991
Google Scholar
[8]
Morino L., Boundary integral equations in aerodynamics, Applied Mechanics Reviews 46 (1993) 445-466
DOI: 10.1115/1.3120373
Google Scholar
[9]
A. D. Pierce, Acoustics: an Introduction to its Physical Principles and Applications, Woodbuey, New York , The Acoustical Society of America 1989.
Google Scholar
[10]
A. Sommerfeld, Partial Differential Equations in Physics, Academic Press Inc., Publishers New York, N.Y. 1949.
Google Scholar
[11]
A.F. Seybert, B. Soenarko, F.J. Rizzo and D.J. Shippy, An advanced computational method for radiation and scattering of acoustic waves in three dimensions , J. Acoust. Soc. Am.77 (1985)362-368 .
DOI: 10.1121/1.391908
Google Scholar
[12]
A. Maghrebi, Galerkin BEM for acoustic radiation in a subsonique uniform flow, Ph.D thesis, Engineering National School of Tunis (publication to appear ).
Google Scholar
[13]
M. Guiggiani and A. Gigante, A General Algorithm for Multidimensional Cauchy Principal Value Integrals in the boundary Element Method, Journal of Applied Mechanics, Vol.57 (1990), 906-915.
DOI: 10.1115/1.2897660
Google Scholar
[14]
I. Babuska, F.Ihlenburg, E. T. Paik, and S. A. Sauter, A Generalized Finite Element Method for Solving the Helmholtz equation in two dimensions with minimal pollution, Comput. Methods Appl. Mech. Engrg., 128 (1995), 325-359.
DOI: 10.21236/ada290280
Google Scholar
[15]
K. Gerdes and F. Ihlenburg, On the pollution effect in FE solutions of the 3D- Helmholtz equation, Comput. Methods Appl. Mech. Engrg., 170 (1999), 155-172.
DOI: 10.1016/s0045-7825(98)00239-4
Google Scholar
[16]
H. Glardi and X. Bohineust, Boundary element calculation of external field around simple structures applied to vehicle analysis, ISMA19-Tools for Noise and Vibration Analysis.
Google Scholar
[17]
A. J. Burton, The solution of Helmholtz' equation in exterior domains using integral equations, National Physical Laboratory, Report. NAC 30 ,Teddington, Middlesex, U. K. (1973).
Google Scholar
[18]
D. G. Crighton, Scattering and diffraction of sound by moving bodies, J. Fluid Mech. Vol.72 part 2 (1975), 209-227.
DOI: 10.1017/s0022112075003308
Google Scholar