Polyaniline-Stannous Oxide Composites: Novel Material for Broadband EMI Shielding

Article Preview

Abstract:

Insitu polymerization of aniline was carried out in the presence of stannous oxide (SnO) to synthesize Polyaniline (PAni)/SnO composites by chemical oxidation method. The surface morphology of the composites were studied by scanning electron microscopy (SEM).The electromagnetic interference (EMI) shielding properties of the composites were investigated for different wt % of SnO (10,20,30,40 and 50 wt%) in PAni. The EMI measurements were carried out in the frequency range from 8.2 to 12.4 GHz (X-band), which is relevant for practical applications. EMI shielding effectiveness (EMI SE), microwave absorption and reflection, the influence of SnO concentration in PAni on EMI SE of the composites are reported. The composites exhibit EMI SE value of -18 to -23 dB. The absorption dominated EMI SE of these composites indicates the potential applications of these materials for microwave attenuation in the X-band.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

557-561

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.R. Kim, H.K. Lee, S.H. Park, H.K. Kim, Thin Solid Films Vol. 519 (2011), pp.3492-3496.

Google Scholar

[2] S.L. Shi, L.Z. Zhan, J.S. Li, Appl. Phys. Lett. Vol. 93 (2008), p.172903.

Google Scholar

[3] I.W. Nam, H.K. Lee, J.H. Jang, Composites: Part A Vol. 42 (2011), pp.1110-1118.

Google Scholar

[4] Salvatore Celozzi, Rodolfo Araneo, Giampiero Lovat, Electromagnetic Shielding (Wiley-Interscience, 2008).

Google Scholar

[5] Kaiser KL, Electromgnetic Shielding (Boca Raton, FL: CRC Press, 2006).

Google Scholar

[6] Jay Amarasekara, J. Reinforced Plastics Vol. 49 (2005), pp.38-41.

Google Scholar

[7] C.Y. Lee, H.G. Song, K.S. Jang, E.J. Oh, A.J. Epstein, J. Joo, Synth. Met. Vol. 102 (1999), pp.1346-1349.

Google Scholar

[8] S. Geetha, K.K. Satheesh Kumar, Chepuri R.K. Rao, M. Vijayan, D.C. Trivedi, J. Applied Polymer Science Vol. 112 (2009), p.2073-(2086).

DOI: 10.1002/app.29812

Google Scholar

[9] H. Stubb, E. Punkka, J. Paloheimo, Mater. Sci. Rep. Vol. 10 (1993), p.85–140.

Google Scholar

[10] S. Sathiyanarayanan, S.K. Dhawan, D.C. Trivedi, K. Balakrishnan, Corr. Sci. Vol. 33 (1992), p.1831–1841.

Google Scholar

[11] P.J. Kinlen, D.C. Silverman, C.J. Hardiman, US Patent 6015613, (2000).

Google Scholar

[12] S.K. Dhawan, D.C. Trivedi, J. Electromagnet. Compat. Vol. 1 (1991), p.1–4.

Google Scholar

[13] S.K. Dhawan, D.C. Trivedi, D. Rodrigues, Sci. and Tech. of Adv. Mater. Vol. 4 (2003), pp.105-113.

Google Scholar

[14] A. Barnes, A. Despotakis, P.V. Wright, T.C.P. Wong, B. Chambers, A.P. Anderson, Electron. Lett. Vol. 32 (1996), p.358.

Google Scholar

[15] T. Mäkelä, S. Pienimaa, T. Taka, S. Jussila, H. Isotalo, Synth. Met. Vol. 85 (1997), pp.1335-1336.

DOI: 10.1016/s0379-6779(97)80259-7

Google Scholar

[16] Sylvain Fauveaux; Jean-Louis Miane, Electromagnetics Vol. 23 (2003), pp.617-627.

Google Scholar

[17] Zhaohui Han, Neng Guo, Fanqing Li, Wanqun Zhang, Huaquiao Zhao, Yitai Qian, Materials Letters Vol. 48 (2001), pp.99-103.

Google Scholar

[18] Syed Khasim, S C Raghavendra, M Revanasiddappa, Sajjan K C, Mohana Lakshmi and Muhammad Faisal, Bull. Mater. Sci. Vol. 34 (2011), p.1–5 (in press).

DOI: 10.1007/s12034-011-0358-z

Google Scholar

[19] D. Micheli, C. Apollo, R. Pastore, M. Marchetti, Composites Science and Technology Vol. 70 (2010), pp.400-409.

Google Scholar

[20] K. Singh, A. Ohlan, P. Saini, S.K. Dhawan, Polym. Adv. Technol. Vol. 19 (2008), p.229.

Google Scholar

[21] Zi Ping Wu, Ming Mao Li, Ying Yan Hu, Ye Sheng Li, Zhi Xiang Wang, Yan Hong Yin, Yi Sheng Chen and Xiao Zhou, Scripta Materialia Vol. 64 (2011), pp.809-812.

Google Scholar

[22] Irina Sapurina and Jaroslav Stejskal, Polym Int. Vol. 57 (2008), p.1295–1325.

Google Scholar