Mechanical Characterization of Nanoclay Reinforced Polypropylene Composites at High Temperature Subjected to Tensile Loads

Article Preview

Abstract:

In this paper, Polypropylene (PP) nanocomposites are prepared by melt mixing in a twin-screw extruder by injection molding. The role of compatibilizing agent is performed by maleic anhydride grafted polypropylene (PP-g-MA) between nanoclay and PP. The effect of nanoclay particles (1, 3, 5 wt %) on the PP composites is investigated for tensile test at high temperature for the first time. Mechanical behaviors of PP/clay nanocomposites at both room temperature (RT) and high temperature (HT) are investigated in terms of tensile properties. Addition of nanoclay showed a significant enhancement in stiffness of PP/clay nanocomposites. Nearly 36% and 157% increase in the tensile modulus at both RT and HT are observed, respectively. But, the increase in tensile strength is almost negligible.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

567-571

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.Z. Longa, M.M. Li, C. Gub, M. Wanc, J.L. Duvaild, Z. Liue and Z. Fanf: Prog. Polym. Sci. Vol. 36 (2011), p.1415.

Google Scholar

[2] W. Gacitua, A. Ballerini and J. Zhang: Cienc. Tecnol. Vol. 3 (2005), p.159.

Google Scholar

[3] S.K. Sharma and S.K. Nayak: Polym. Degrad. Stab. Vol. 94 (2009), p.132.

Google Scholar

[4] C.P. Mulligan, T.A. Blanchet and D. Galla: Wear. Vol. 269 (2010), p.125.

Google Scholar

[5] H. Tang, Z. Wan, M, Pan and S.P. Jiang: Electrochem. Commun. Vol. 9 (2007), p. (2003).

Google Scholar

[6] M. Amjadi, S. Rowshanzamir, S.J. Peighambardoust, M.G. Hosseini and M.H. Eikani: Int. J. Hydrogen Energy. Vol. 35 (2010), p.9252.

DOI: 10.1016/j.ijhydene.2010.01.005

Google Scholar

[7] E. Ionescu, C. Linck, C. Fasel, M. Muller, H.J. Kleebe and R. Riedel: J. Am. Ceram. Soc. Vol. 93 (2010), p.241.

Google Scholar

[8] Y.S. Zhang, L.T. Hu, J.M. Chen and W.M. Liu: Wear. Vol. 268 (2010), p.1091.

Google Scholar

[9] A. Pegoretti, A. Dorigato and A. Penati: Polym. Lett. Vol. 1(2007), p.123.

Google Scholar

[10] K.M. Varlot, E. Reynaud, G. Vigier and J. Varlet: J. Polym. Sci., Part B: Polym. Phys. Vol. 40 (2002), p.272.

DOI: 10.1002/polb.10088

Google Scholar

[11] T. McNallya, P. Potschke, P. Halley, M. Murphy, D. Martin, S.E.J. Bell, G.P. Brennan, D. Bein, P. Lemoine and J.P. Quinn: Polymer. Vol. 46 (2005), p.8222.

DOI: 10.1016/j.polymer.2005.06.094

Google Scholar

[12] T.P. Selvin, J. Kuruvilla and T. Sabu: Mater. Lett. Vol. 58 (2004), p.281.

Google Scholar

[13] H. Hanim, R. Zarina, M.Y.A. Fuad, Z.A.M. Ishak and A. Hassan: Malaysian. Polym. J. Vol. 3 (2008), p.38.

Google Scholar

[14] D. Eirasa and L.A. Pessan: Mater. Res. Vol. 12 (2009), p.523.

Google Scholar

[15] M. Garca, G.V. Vliet, S. Jain, B. A. G. Schrauwen, A. Sarkissov, W.E. van Zyl and B. Boukamp: Rev. Adv. Mater. Sci. Vol. 6 (2004), p.169.

Google Scholar

[16] Q. Yuan and R.D.K. Misra: Polymer. Vol. 47 (2006), p.4421.

Google Scholar

[17] P. Svoboda, C. Zeng, H. Wang, L.J. Lee, D.L. Tomasko: J. Appl. Polym. Sci. Vol. 85 (2002), p.1562.

Google Scholar