[1]
L. Zhang: Structure-Property Relationship of Polyurethane Flexible Foam Made From Natural Oil Polyols (ProQuest Diss., Public. No. AAT 3383539, University of Minnesota, 2008).
Google Scholar
[2]
D. Klempner and V. Sendijarevic: Polymeric Foams and Foam Technology, 2nd ed, Hanser, Cincinnati (2004).
Google Scholar
[3]
R.D. Widdle: Measurement and Modelling of the Mechanical Properties of Flexible Polyurethane Foam (ProQuest Diss., Public. No. AAT 3191584, Purdue University, 2005).
Google Scholar
[4]
G.K. Latinwo, D.S. Aribike, A.A. Susu and S.A. Kareem: Nat. Sci. Vol. 8 No. 6 (2010a), pp.23-26.
Google Scholar
[5]
S. Taj, M.A. Munawar and S. Khan: Proc. Pakistan Acad. Sci. Vol. 44 No. 2, pp.129-144. (2007).
Google Scholar
[6]
S.N. Monteiro, L.A.H. Terrones and J.R.M. D'Almeida: Polym. Test. Vol. 27 (2008), pp.591-595.
Google Scholar
[7]
V.L. Shulman: Tyre Recycling, Rapra Review Report, Vol. 15, No. 7, Rapra Technology, Shropshire (2004).
Google Scholar
[8]
A.K. Bledzki, W. Zhang and A. Chate: Compos. Sci. Technol. Vol. 61 (2001), pp.2405-2411.
Google Scholar
[9]
G. Lin, X.J. Zhang, L. Liu, J.C. Zhang, Q.M. Chen and L.Q. Zhang: Eur. Polym. J. Vol. 40 (2004), pp.1733-1742.
Google Scholar
[10]
M.V. Alonso, M.L. Auad and S. Nutt: Compos. Part A Vol. 37 (2006), p.1952-(1960).
Google Scholar
[11]
L.F. Zhang, E.D. Yilmaz, J. Schjodt-Thomsen, J.C. Rauhe and R. Pyrz: Compos. Sci. Technol. Vol. 71 (2011), pp.877-884.
Google Scholar
[12]
J.H. Kim, K.C. Choi and J.M. Yoon: J. Ind. Eng. Chem. Vol. 12 No. 5 (2006), pp.795-801.
Google Scholar
[13]
R.F. Gidson: Principles of Composite Material Mechanics, 2nd ed, CRC Press, Boca Raton (2007).
Google Scholar
[14]
D. de Mello, S.H. Pezzin and S.C. Amico: Polym. Test. Vol. 28 (2009), pp.702-708.
Google Scholar
[15]
R. Verdejo, R. Stampfli, M. Alvarez-Lainez, S. Mourad, M.A. Rodriguez-Perez, P.A. Bruhwiler and M. Shaffer: Compos. Sci. Technol. Vol. 69 (2009), pp.1564-1569.
Google Scholar
[16]
G.K. Latinwo, D.S. Aribike, L.O. Oyekunle, A.A. Susu and S.A. Kareem: Nat. Sci. Vol. 8 No. 9 (2010b).
Google Scholar
[17]
H. Gu: Mater. Des. Vol. 30 (2009), pp.3931-3934.
Google Scholar
[18]
V.G. Geethamma, G. Kalaprasad, G. Groeninckx and S. Thomas: Compos. Part A Vol. 36 (2005), pp.1499-1506.
Google Scholar
[19]
M.F. Rosa, B. Chiou, E.S. Medeiros, D.F. Wood, T.G. Williams, L.H.C. Mattoso, W.J. Orts and S.H. Imam: Bioresour. Technol. Vol. 100 (2009), pp.5196-5202.
DOI: 10.1016/j.biortech.2009.03.085
Google Scholar
[20]
Z.X. Xin, Z.X. Zhang, K. Pal, J.U. Byeon, S.H. Lee and J.K. Kim: Mater. Des. Vol. 31 (2010), pp.589-593.
Google Scholar
[21]
X.H. Dai, Z.M. Liu, Y. Wang, G.Y. Yang, J. Xu and B.X. Han: J. Supercrit. Fluids Vol. 33 (2005), pp.259-267.
Google Scholar
[22]
H.R. Sankar, P.V. Krishna, V.B. Rao and P.B. Babu: Proc. Inst. Mech. Eng. Pt. L J. Mater. Des. Applic. Vol. 224, p.63. (2010).
Google Scholar
[23]
C.G. Mothe and I.C. de Miranda: J. Therm. Anal. Calorime. Vol. 97 (2009), pp.661-665.
Google Scholar
[24]
C.H. Scuracchio, D.A. Waki and M.L.C.P. da Silva: J. Therm. Anal. Calorimet. Vol. 87 (2007), pp.893-897.
Google Scholar
[25]
Y. Li, H.F. Ren and A.J. Ragauskas: Nano-Micro Lett. Vol. 2 No. 2 (2010), pp.89-94.
Google Scholar