Kinetics of Thermal Degradation of Ionic Liquid Regenerated Cellulose

Article Preview

Abstract:

In the present work ionic liquid has been used for the regeneration of cellulose from waste writing paper. The regenerated cellulose was characterized by TGA, FTIR and XRD analyses. Kinetics of thermal degradation of this cellulose was carried out under dynamic condition using thermogravimetry. Coats-Redfern kinetic model was used to determine the kinetic parameters for the degradation process. The activation energy for the thermal degradation of the regenerated cellulose has been found to be less than the precursor waste paper.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

923-927

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H Zhao, Ja. H. Kwak; Z.C. Zhang, H.M. Brown, B.W. Arey and J.E. Holladay: CarbohydratePolymers, 68(2) (2007), 235-241.

Google Scholar

[2] A. Isogai (2001). Chemical modification of cellulose in "Wood and cellulosic chemistry: second edition, revised and expanded, Ed. By Hon D.N. -S. and Shiraishi, N., Mercel Dekker, New York, 559-624.

Google Scholar

[3] D. J Murphy and N Power: Waste management 27 (2007), 177-192.

Google Scholar

[4] M.J. Earle, K.R. Seddon. Ionic liquids. Green solvents for the future. Pure Appl. Chem., 72 (2000), 1391–1398.

DOI: 10.1351/pac200072071391

Google Scholar

[5] X.R. Li: Green solvents: synthesis and application of ionic liquids, ed. China Chemical Industry press, Beijing, 2005, pp.298-300.

Google Scholar

[6] A Pinkert, N. K Marsh, S. Pang, P. M Staiger: Chem. Rev., 109 (2009), 6712–6728.

Google Scholar

[7] l Seoud, A. O., Koschella, A., Fidale, C. L., Dorn, S., Heinze, T.: Applictions of ionic liquids in carbohydrates chemistry: A window of opportunities. Biomacromolecules, 8, 2629-2646(2007).

DOI: 10.1021/bm070062i

Google Scholar

[8] F. Li, C. Zhong-lan: J. Mol. liq. 142 (2008), 1-5.

Google Scholar

[9] R.P. Swatloski, S.K. Spear, J.D. Holbrey, and R.D. Rogers: J. Am. Chem. Soc. 124(2002) , 4974-4975.

Google Scholar

[10] S. Kohler, T. Heinze: Cellulose. 14 (2007), 489–495.

Google Scholar

[11] H. Xie, S. Li, S. Zhang: Green Chem. 7 (2005), 606–608.

Google Scholar

[12] B Saha, K. A Ghoshal: Chem. Eng. J. 39 (2005), 111.

Google Scholar

[13] X. Li, M. Huang, Y . Yang: Polym. Int., 48 (1999), 1277.

Google Scholar

[14] Z. Gao, I. Amasaki, M. Nakada: J. Anal. Appl. Pyrol., 67 (2003) , 1-9.

Google Scholar

[15] E.H. Kissinger: Anal. Chem., 29 (1957) , 1702.

Google Scholar

[16] A.N. M., Bhuiyan, K. Murakami, M. Ota:. Journal of environ. Engg, 3 (2008), 1-12.

Google Scholar

[17] J. M. AntalJr, L. H. Friedman: Combust. Sci. Technol. 21, 141-152(1980).

Google Scholar

[18] A.W. Coats, J. P Redfern: Nature, 201(1) (1964), 68-69M.

Google Scholar

[19] Nuopponen, H. Wikberg, T. Vuorinen, L.S. Maunu, S. Jamasa, P. Viitaniemi: J. Appl. Polym. Sci 91(2003), 2128-2134.

DOI: 10.1002/app.13351

Google Scholar

[20] Ursula, Kues. Wood Production, Wood Technology, and Biotechnological Impacts. Published by UniversitätsverlagGöttingen (2007).

Google Scholar

[21] H. Zhang, J. Wu, J. Zhang and J. He: Macromolecules, 38 (2005), 8272-8277.

Google Scholar

[22] S. M. Zhou, K. Tashiro, T. Hongo, H. Shirataki, C. Yamane, T. Ii: Macromolecules34 (2001), 1274-1280.

Google Scholar

[23] Y. Kataoka, T. Kondo: Macromolecules, 31 (1998), 760-764.

Google Scholar

[24] Y. Takahashi and H. Matsunaga: Macromolecules. 24, (1991) , 3968-3969.

Google Scholar

[25] S. Raymond, et al: Macromolecules. 28 (1995), 8422-8425.

Google Scholar

[26] F. J. Kolpak and J. Blackwell: Macromolecules. 9 (1976), 273-278.

Google Scholar

[27] S. Volker, T. Rieckmann: J. Appl. Polym Sci., 62 (2002), 165.

Google Scholar

[28] L. Sangmook and S.J. Byung: Macromol. Res. 14 (2006), 491-498.

Google Scholar