Computation and Analysis of Frost Formation on Ground Aircraft

Article Preview

Abstract:

Aircraft ground icing can result in decreasing the stability of the aircraft at or shortly after take off.. A theoretical model for frost formation by water vapor on aircraft in atmospheric air has been presented in this study. Frost surface temperature and frost thickness can be obtained by the model. Effects of aircraft surface temperatures and air conditions, such as aircraft surface temperature, air temperature and air velocity on the frost surface temperature and frost thickness can be evaluated by using this model. It revealed that the surface temperature increases with the surface temperature, the air speed and air temperature. The frost thickness increases with the air speed and the air temperature, decrease with the surface temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 490-495)

Pages:

166-170

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Farzaneh, Atmospheric icing of power networks, Springer Verlag, (2008).

Google Scholar

[2] C.C. Ryerson, Ice protection of offshore platforms, Cold Regions Science and Technology, 65 (2011) 97-110.

DOI: 10.1016/j.coldregions.2010.02.006

Google Scholar

[3] J. Riley, W. Underwood, E. Pugacz, The FAA Ground Icing Research Program, in: 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, (2007).

DOI: 10.2514/6.2007-694

Google Scholar

[4] H. Beaugendre, F. Morency, W.G. Habashi, Development of a second generation in-flight icing simulation code, J. Fluids Eng. -Trans. ASME, 128 (2006) 378-387.

DOI: 10.1115/1.2169807

Google Scholar

[5] T. Hedde, D. GUFFOND, ONERA three-dimensional icing model, AIAA journal, 33 (1995) 1038-1045.

DOI: 10.2514/3.12795

Google Scholar

[6] G. Croce, E. De Candido, W.G. Habashi, J. Munzar, M.S. Aube, G.S. Baruzzi, C. Aliaga, FENSAP-ICE: Analytical Model for Spatial and Temporal Evolution of In-Flight Icing Roughness, Journal of Aircraft, 47 (2010) 1283-1289.

DOI: 10.2514/1.47143

Google Scholar

[7] L. Makkonen, Models for the Growth of Rime, Glaze, Icicles and Wet Snow on Structures, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, Vol. 358, No. 1776 (2000) 27.

DOI: 10.1098/rsta.2000.0690

Google Scholar

[8] P. Fu, M. Farzaneh, G. Bouchard, Two-dimensional modelling of the ice accretion process on transmission line wires and conductors, Cold Regions Science and Technology, 46 (2006) 132-146.

DOI: 10.1016/j.coldregions.2006.06.004

Google Scholar

[9] R. LeGall, J.M. Grillot, C. Jallut, Modelling of frost growth and densification, International Journal of Heat and Mass Transfer, 40 (1997) 3177-3187.

DOI: 10.1016/s0017-9310(96)00359-6

Google Scholar

[10] K.A.R. Ismail, C.S. Salinas, Modeling of frost formation over parallel cold platesModélisation de la formation de givre sur les plaques froides parallèles, International Journal of Refrigeration, 22 (1999) 425-441.

DOI: 10.1016/s0140-7007(98)00069-3

Google Scholar

[11] M. Kandula, Frost growth and densification in laminar flow over flat surfaces, International Journal of Heat and Mass Transfer, 54 (2011) 3719-3731.

DOI: 10.1016/j.ijheatmasstransfer.2011.02.056

Google Scholar

[12] C.H. Cheng, Y.C. Cheng, Predictions of frost growth on a cold plate in atmospheric air, International Communications in Heat and Mass Transfer, 28 (2001) 953-962.

DOI: 10.1016/s0735-1933(01)00299-8

Google Scholar

[13] P.J. Mago, S.A. Sherif, Frost formation and heat transfer on a cold surface in ice fog, International Journal of Refrigeration, 28 (2005) 538-546.

DOI: 10.1016/j.ijrefrig.2004.10.004

Google Scholar

[14] H.R. Pruppacher, J.D. Klett, Microphysics of Clouds and Precipitation, Springer Netherlands, (1997).

Google Scholar

[15] M. Kandula, Frost growth and densification in laminar flow over flat surfaces, International Journal of Heat and Mass Transfer, In Press, Corrected Proof.

DOI: 10.1016/j.ijheatmasstransfer.2011.02.056

Google Scholar

[16] P.J. Flatau, R.L. Walko, W.R. Cotton, POLYNOMIAL FITS TO SATURATION VAPOR-PRESSURE, Journal of Applied Meteorology, 31 (1992) 1507-1513.

DOI: 10.1175/1520-0450(1992)031<1507:pftsvp>2.0.co;2

Google Scholar