[1]
M. Farzaneh, Atmospheric icing of power networks, Springer Verlag, (2008).
Google Scholar
[2]
C.C. Ryerson, Ice protection of offshore platforms, Cold Regions Science and Technology, 65 (2011) 97-110.
DOI: 10.1016/j.coldregions.2010.02.006
Google Scholar
[3]
J. Riley, W. Underwood, E. Pugacz, The FAA Ground Icing Research Program, in: 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, (2007).
DOI: 10.2514/6.2007-694
Google Scholar
[4]
H. Beaugendre, F. Morency, W.G. Habashi, Development of a second generation in-flight icing simulation code, J. Fluids Eng. -Trans. ASME, 128 (2006) 378-387.
DOI: 10.1115/1.2169807
Google Scholar
[5]
T. Hedde, D. GUFFOND, ONERA three-dimensional icing model, AIAA journal, 33 (1995) 1038-1045.
DOI: 10.2514/3.12795
Google Scholar
[6]
G. Croce, E. De Candido, W.G. Habashi, J. Munzar, M.S. Aube, G.S. Baruzzi, C. Aliaga, FENSAP-ICE: Analytical Model for Spatial and Temporal Evolution of In-Flight Icing Roughness, Journal of Aircraft, 47 (2010) 1283-1289.
DOI: 10.2514/1.47143
Google Scholar
[7]
L. Makkonen, Models for the Growth of Rime, Glaze, Icicles and Wet Snow on Structures, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, Vol. 358, No. 1776 (2000) 27.
DOI: 10.1098/rsta.2000.0690
Google Scholar
[8]
P. Fu, M. Farzaneh, G. Bouchard, Two-dimensional modelling of the ice accretion process on transmission line wires and conductors, Cold Regions Science and Technology, 46 (2006) 132-146.
DOI: 10.1016/j.coldregions.2006.06.004
Google Scholar
[9]
R. LeGall, J.M. Grillot, C. Jallut, Modelling of frost growth and densification, International Journal of Heat and Mass Transfer, 40 (1997) 3177-3187.
DOI: 10.1016/s0017-9310(96)00359-6
Google Scholar
[10]
K.A.R. Ismail, C.S. Salinas, Modeling of frost formation over parallel cold platesModélisation de la formation de givre sur les plaques froides parallèles, International Journal of Refrigeration, 22 (1999) 425-441.
DOI: 10.1016/s0140-7007(98)00069-3
Google Scholar
[11]
M. Kandula, Frost growth and densification in laminar flow over flat surfaces, International Journal of Heat and Mass Transfer, 54 (2011) 3719-3731.
DOI: 10.1016/j.ijheatmasstransfer.2011.02.056
Google Scholar
[12]
C.H. Cheng, Y.C. Cheng, Predictions of frost growth on a cold plate in atmospheric air, International Communications in Heat and Mass Transfer, 28 (2001) 953-962.
DOI: 10.1016/s0735-1933(01)00299-8
Google Scholar
[13]
P.J. Mago, S.A. Sherif, Frost formation and heat transfer on a cold surface in ice fog, International Journal of Refrigeration, 28 (2005) 538-546.
DOI: 10.1016/j.ijrefrig.2004.10.004
Google Scholar
[14]
H.R. Pruppacher, J.D. Klett, Microphysics of Clouds and Precipitation, Springer Netherlands, (1997).
Google Scholar
[15]
M. Kandula, Frost growth and densification in laminar flow over flat surfaces, International Journal of Heat and Mass Transfer, In Press, Corrected Proof.
DOI: 10.1016/j.ijheatmasstransfer.2011.02.056
Google Scholar
[16]
P.J. Flatau, R.L. Walko, W.R. Cotton, POLYNOMIAL FITS TO SATURATION VAPOR-PRESSURE, Journal of Applied Meteorology, 31 (1992) 1507-1513.
DOI: 10.1175/1520-0450(1992)031<1507:pftsvp>2.0.co;2
Google Scholar