[1]
A Friedman, tial Differential Equations of Parabolic Type{Florida: Krieger}, (1983).
Google Scholar
[2]
A shidfar, G R Karamali, Numerical solution of inverse heat conduction problem with nonstationary measurements, Appl. Math. and Comp., 2005, Vol. 168, 540-548.
DOI: 10.1016/j.amc.2004.09.028
Google Scholar
[3]
H B Nersisyan and D A Osipyan, The moving boundary problem in the presence of a dipole magnetic field, J. Phys. A: Math. Gen., Vol. 39 (2006), 7531-7542.
DOI: 10.1088/0305-4470/39/23/024
Google Scholar
[4]
Z W Wang, J J Liu. New model function methods for determining regularization parameters in linear inverse problems[J]. Applied Numerical Mathematics, 59(8): (2009)2489-2506.
DOI: 10.1016/j.apnum.2009.05.006
Google Scholar
[5]
H L Xu, J J Liu. A new model function method for determining the regularizing parameter in linear ill-posed problems. in publishing.
Google Scholar
[6]
J J Liu and D G Luo, On stability and regularization for backward heat equation, Chin. Ann. Math., 24B(2003), 35-44.
Google Scholar
[7]
J.J. Liu, Regularization methods of ill-posed problems and its applications(Published in China), Beijing(2005).
Google Scholar
[8]
R Kress, Linear Integral Equations, Springer-Verlag, Berlin(1989).
Google Scholar
[9]
S De Lillo, A S Fokas, The Dirichlet-to-Neumann map for the heat equation on a moving boundary, Inverse Problems, Vol. 23(2007), 1699-1710.
DOI: 10.1088/0266-5611/23/4/020
Google Scholar
[10]
Zhang Xueyan, Methods of moving boundary in heat conduction direct problem, China Science and Technology Information , Vol. 8(2010), 43-47.
Google Scholar