Synthesis of Gold Nanoparticles by Using a Bolaform Schiff Base Amphiphile at Liquid-Liquid Interface

Article Preview

Abstract:

Gold nanoparticles were synthesized via a bolaform amphiphile with hydrophilic ethyleneamine spacer at a liquid-liquid interface. By stirring the aqueous solution containing AuCl4- ions with the chloroform solution of bolaform amphiphile, AuCl4- ions were transferred into the oil phase and reduced to gold nanoparticles. UV-vis and FT-IR spectral measurements indicated that the bolaform amphiphile could serve as both capping and reducing agents. Crystalline gold nanoparticles were predominantly obtained if the bolaform amphiphile solutions with appropriate concentrations were applied. The generated gold nanoparticles were characterized by UV-vis spectroscopy and atomic force spectroscopy (AFM). It is predicted that gold and other novel metal nanostructures may be produced by bolaform amphiphiles whose properties can be well-controlled by designing different headgroups, spacers or substituted groups.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 490-495)

Pages:

3694-3697

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Haruta and M. Date: Appl. Catal. A: Gen. Vol. 222 (2001), p.427.

Google Scholar

[2] S. Guo and E. Wang: Anal. Chim. Acta Vol. 598 (2007), p.181.

Google Scholar

[3] E.M.S. Azzam, A. Bashir, O. Shekhah, A.R.E. Alawady, A. Birkner, Ch. Grunwald and Ch. Woll: Thin Solid Films Vol. 518 (2009), p.387.

DOI: 10.1016/j.tsf.2009.07.120

Google Scholar

[4] C.J. Murphy, T.K. Sau,  A.M. Gole, C.J. Orendorff, J.X. Gao, L.F. Gou, S.E. Hunyadi and T. Li: J. Phys. Chem. B Vol. 109 (2005), p.13857.

DOI: 10.1021/jp0516846

Google Scholar

[5] T. Shimizu, T. Teranishi, S. Hasegawa and M. Miyake: J. Phys. Chem. B Vol. 107 (2003), p.2719.

Google Scholar

[6] L. Bronstein, D. Chernyshov, P. Valetsky, N. Tkachenko, H. Lemmetyinen, J. Hartmann and S. Forster: Langmuir Vol. 15 (1999), p.83.

DOI: 10.1021/la980868r

Google Scholar

[7] Y. Mizukoshi, K. Okitsu, Y. Maeda, T. Yamamoto, R. Oshima and Y. Nagata: J. Phys. Chem. B Vol. 101 (1997), p.7033.

Google Scholar

[8] J.H. Fuhrhop and J. Matthieu: Angew. Chem., Int. Ed. Vol. 23 (1984), p.100.

Google Scholar

[9] J.H. Fuhrhop and D. Fritsch: Acc. Chem. Soc. Vol. 19 (1986), p.130.

Google Scholar

[10] G.H. Escamilla and G.R. Newkome: Angew. Chem., Int. Ed. Vol. 33 (1994), p. (1937).

Google Scholar

[11] M. Brunelle, A. Polidori, S. Denoyelle, A.S. Fabiano, P.Y. Vuillaume, S. Laurent-Lewandowski and B. Pucci: C. R. Chimie Vol. 12 (2009), p.188.

DOI: 10.1016/j.crci.2008.05.018

Google Scholar

[12] S. Grinberg, V. Kolot, C. Linder, E. Shaubi, V. Kasyanov, R.J. Deckelbaum and E. Heldman: Chem. Phys. Lipids Vol. 153 (2008), p.85.

DOI: 10.1016/j.chemphyslip.2008.01.006

Google Scholar

[13] Y. Zhang, R. Jin, L. Zhang and M. Liu: New J. Chem. Vol. 28 (2004), p.614.

Google Scholar

[14] K. Kohler, A. Meister, G. Forster, B. Dobner, S. Drescher, F. Ziethe, W. Richter, F. Steiniger, M. Drechsler, G. Hause and A. Blume: Soft Matter Vol. 2 (2006), p.77.

DOI: 10.1039/b514163j

Google Scholar