[1]
C. Ferreira: Gene Expression Programming: A New Adaptive Algorithm for Solving Problems, Complex System, Vol. 13(2001), pp.87-129.
Google Scholar
[2]
C. Zhou, W. Xiao, P. Nelson and T. M. Tirpak: Evolving Accurate and Compact Classification Rules with Gene Expression Programming. IEEE Transactions on Evolutionary Computation, Vol. 7 (2003), p.519–531.
DOI: 10.1109/tevc.2003.819261
Google Scholar
[3]
J. Zhou, C. J. Tang, C. Li, et al.: Time Series Prediction based on Gene Expression Programming, International Conference for Web Information Age, (2004).
Google Scholar
[4]
J. Zuo, C. J. Tang and T. Q. Zhang : Mining Predicate Association Rule by Gene Expression Programming, Lecture Notes In Computer science, Vol. 2419 (2002), p.92–103.
DOI: 10.1007/3-540-45703-8_9
Google Scholar
[5]
J. Kennedy and R. C. Eberhart: Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks, Vol. IV (1995), p.1942-(1948).
Google Scholar
[6]
R. Storn, K. Price: Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces. Berkeley: University of California. (2006).
Google Scholar
[7]
Xiaofeng Xie, Wenjun Zhang, Guo Zhang, Zhilian Yang: The experiment research of the differences evolution, Control and Decision, Vol. 19 (2004), pp.49-52.
Google Scholar
[8]
H. Y. Fan, J. Lampinen: A trigonometric mutation operation to differential evolution, Journal of Global Optimization, Vol. 27 (2003), pp.105-129.
Google Scholar
[9]
J. P. Chiou, C. F. Chang, C. T. Su: Variable scaling hybrid differential evolution for solving network reconfiguration of distribution systems, IEEE Trans on Power Systems, Vol. 20 (2005), pp.668-674.
DOI: 10.1109/tpwrs.2005.846096
Google Scholar
[10]
F. S. Wang, C. H. Jing, G. T. Tsao: Fuzzy-decision making problems of fuel ethanol production using a genetically engineered yeast, Industrial & Engineering Chemistry Research, Vol. 37(1998), pp.3434-3443.
DOI: 10.1021/ie970736d
Google Scholar
[11]
Y. C. Lin, K. S. Hwang, F. S. Wang: Co-evolutionary hybrid differential evolution for mixed-integer optimization problems, Engineering Optimization, Vol. 33 (2001), pp.663-682.
DOI: 10.1080/03052150108940938
Google Scholar
[12]
P. Larrariaga, J. A. Lozano: Estimation of Distribution Algorithms, A New Tool for Evolutionary Computation, Boston: Kluwer Academic Publishers, (2002).
Google Scholar