Temperature Compensation Experiment of Love Wave Sensor

Article Preview

Abstract:

Love wave sensor is one of the most promising SAW sensors for liquid detection, because of acoustic energy can be confined in sensing surface by waveguide layer of Love wave sensor, which resulted in higher sensitivity to surface perturbations. Temperature coefficient of frequency (TCF) has deep effect on effective sensitivity of Love wave sensor. In order to improve the performance of Love wave sensor, the theoretical relationship of TCF on substrates and guiding layers temperature properties is researched. It found that reasonable combinations of substrates and guiding layers was a feasible method to obtain effective temperature compensation, and experimental TCF of sensitive element is reduced to 0.75ppm/°C by this method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 490-495)

Pages:

673-677

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Wohltjen, Sensor and Actuators, 5(1984) 307-325.

Google Scholar

[2] H. Wohltjen, A. W. Snow, W. R. Barger and D. S. Ballantine, Ferroelectrics Freq. Control, UFFC-34 (1987) 172-178.

DOI: 10.1109/t-uffc.1987.26929

Google Scholar

[3] F. Josse and Z. Shana, J. Acoust. Soc. Am., 84(1988) 978-984.

Google Scholar

[4] S. J. Martin, A. J. Ricco, T. M. Niemczyk and G. C. Frye, Sensors and Actuators, 20(1989) 253-268.

DOI: 10.1016/0250-6874(89)80124-6

Google Scholar

[5] J. C. Andle, J. F. Vetelino and F. Josse, Proc. 1991 IEEE Ultrasonics Symp., Orlando, FL, USA. 1991, pp.285-288.

Google Scholar

[6] J. Kondoh and S. Shiokawo, Solid-State Sensors and Actuators (Transducers'95/Eurosensors IX), Stockholm, Sweden, 25-29 June, 1995, pp.716-719.

Google Scholar

[7] C. Dejous, M. Savart, D. Rebiere and J. Pistre, Sensors and Actuators B, 26-27(1995) 452-456.

Google Scholar

[8] Zimmermann C., Rebiere D., Dejous C., et al. Sensors and Actuators B, 2001, 76 (1-3): 86-94.

Google Scholar

[9] Florence Razan, C´eline Zimmermann, Dominique Rebi`ere , Corinne D´ejous, Jacques Pistr´e, Mathias Destarac, Bertrand Pavageau, Sensors and Actuators B, 2005, 108: 917–924.

DOI: 10.1016/j.snb.2004.12.093

Google Scholar

[10] Caliendo C, D'Amico A, Verardi P, et al. IEEE Ultrasonics Symposium Proceedings, Piscataway, NJ: IEEE Press, 1990, 1: 383-387.

Google Scholar

[11] Harding G L, Du J, Dencher P R, et al. Sensors and Actuators A, 1997, 61(1-3): 279-286.

Google Scholar

[12] Kovacs, G., Lubking, G.W., Vellekoop, M.J., Venema, A., Ultrasonics Symposium, 1992, 281–285.

Google Scholar

[13] Jakoby, B., Vellekoop, M.J., IEEE Transducers on Ultrasonics, Ferroelectric and Frequency Control 45(5), 1998, 1293–1302.

Google Scholar

[14] Jakoby, B., Vellekoop, M.J., Sensor and Actuators A, 1998, 68: 275–281.

Google Scholar

[15] Jia Du, Geoffrey L. Harding, Sensor and Actuators A, 1998, 65: 152-159.

Google Scholar

[16] B. Jakoby, M.J. Vellekoop, Proc. IEEE Ultrasonics Symposium, Sendai, Japan, 1998: 447–450.

Google Scholar

[17] B. Jakoby, J. Bastemeijer, M. J. Vellekoop, Sensors and Actuators, 2000, 82: 83–88.

Google Scholar

[18] Y. G. Zhang, National Cheng Kung University, 2004. 7.

Google Scholar

[19] Man-San Lai, National Cheng Kung University, 2001. 5.

Google Scholar