The Electrochemical Performance of Carboxymethyl Cellulose with Different DS as a Binding Material in Lithium Batteries

Article Preview

Abstract:

The carboxymethyl cellulose (CMC) with the different degree of substitution, which was synthesized in the mixed agent system of isopropanol and ethanol and water, was used in rechargeable Lithium batteries. The electrochemical performance of the 9,10-anthracenedione (AQ) electrodes with different binders were investigated by galvanostatic discharge/charge, cyclic voltammetry and electrochemical impedance spectroscopy techniques. Tested as the binding material in a lithium cell at room temperature, the CMC electrode showed better electrochemical performance compared to a PVDF electrode. It exhibited a specific capacity of up to 214 mAh.g-1 at the initial discharge, and its specific capacity was maintained at 62 mAh.g-1 after 50 cycles. In addition, it had better stability during the charge and discharge processes. Furthermore, the electrochemical performance of the CMC with lower degree of substitution(DS) was better.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-119

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Zhang, P.N. Ross, R. Kostecki et al: Electrochem. Soc., 148 (2001), p. A463

Google Scholar

[2] H. Buqaa, M. Holzapfela, F. Krumeichb et al: Power Sources, 161(2006), p.617

Google Scholar

[3] B. Lestrieza, S. Bahria, I. Sandua et al: Electrochem. Commun., 9 (2007), p.2801

Google Scholar

[4] N.S. Hochgatterer, M.R. Schweiger, S. Koller et al: Electrochem. Solid-State Lett. 11(2008), p.A76

Google Scholar

[5] H. Maleki, G. Deng, I.K. Haller et al: Electrochem. Soc., 147 (2000), p.4470

Google Scholar

[6] A. Guerfi, M. Kaneko, M. Petitclerc et al: Power Sources, 163 (2007), p.1047

Google Scholar

[7] J. Li, H.M. Dahn, L.J. Krause et al: Electrochem. Soc., 155 (2008), p. A813

Google Scholar

[8] M. Manickam, K. Minato, M. Takata et al: Electrochem. Soc., 150 (2003), p. A1085

Google Scholar

[9] Y.L. Wu, J.L. Wang, L.C. Yin et al: Acta Phys.-Chim. Sin., 26 (2010), p.283

Google Scholar

[10] J. Li, D.B. Le, P.P. Ferguson et al: Electrochim. Acta, 55 (2010), p.2991

Google Scholar

[11] J. Li, R.B. Lewis, J.R. Dahna: Electrochem. Solid-State Lett., 10 (2007), p. A17

Google Scholar

[12] J. Drofenik, M. Gaberscek, R. Dominko et al: Electrochim. Acta., 48 (2003), p.883

Google Scholar

[13] Z. Chao; J.Z. Wang, S.L. Chou et al: J. Appl. Electrochem, 40 (2010), p.1415

Google Scholar

[14] M. C. Fabrice, N.Svetlana, D. Dominique et al: J. Power Sources, 196 (2011), p.2187

Google Scholar

[15] S.L. Chou, J.Z. Wang, C. Zhong et al: Electrochim. Acta., 54 (2009), p.7519

Google Scholar

[16] H. Atsushi, T. Masatoshi, M. Kazuo, JP Patent 08,313,857. (1998)

Google Scholar

[17] H.Y. Chen, M. Armand, M. Courty et al: Chem. Sus.chem., 1 (2008), p.348

Google Scholar

[18] H.Y. Chen, P. Poizot, F. Dolhem et al: J. AM. Chem. Soc., 131 (2009), p.8984

Google Scholar

[19] Z.P. Song, H. Zhan, Y.H. Zhou: Chem. Commun., 24 (2009), p.449

Google Scholar