Adaptive Switching Control for Projected Synchronization of Chaotic Systems with Uncertainties

Article Preview

Abstract:

This paper is concerned with the projective synchronization problem for a class of chaotic system with uncertainties. By utilizing single Lyapunov function method, an adaptive switching control scheme for the synchronization has been presented. Simulation examples, the chaotic Liu system are given to show the feasibility and effectiveness of the proposed theory and method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

360-365

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Chen ,X. Dong, From Chaos to Order Methodologies, Perspectives, and Applications, World Scientific, Singapore, (1998).

Google Scholar

[2] L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett, 64 , 1990, PP: 821–824.

DOI: 10.1103/physrevlett.64.821

Google Scholar

[3] C.C. Hwang, J.Y. Hsieh, R.S. Lin, A linear continuous feedback control of Chua's circuit, Chaos, Solitons, Fractals, 8 , 1997, PP: 1507–1515.

DOI: 10.1016/s0960-0779(96)00150-6

Google Scholar

[4] J.H. Lu, J.A. Lu, Controlling uncertain Lü system using linear feedback, Chaos, Solitons, Fractals, 17 , 2003, PP: 127–133.

DOI: 10.1016/s0960-0779(02)00456-3

Google Scholar

[5] J.H. Park, Adaptive synchronization of a four-dimensional chaotic system with uncertain parameters, International Journal of Nonlinear Sciences and Numerical Simulation, 6 (3) , 2005, PP: 305–310.

DOI: 10.1515/ijnsns.2005.6.3.305

Google Scholar

[6] P. Celka, Chaotic synchronization and modulation of nonlinear time-delayed feedback optical systems, IEEE Trans. Circuits and Systems, 42(8), 1995, PP: 455-463.

DOI: 10.1109/81.404049

Google Scholar

[7] C. Masoller, Anticipation in the synchronization of chaotic time-delay systems, Physica A, 295, 2001, PP: 301-304.

DOI: 10.1016/s0378-4371(01)00092-9

Google Scholar

[8] G.H. Li, Generalized projective synchronization between Lorenz system and Chen's system, Chaos, Solitons, Fractals, 32 , 2007, PP: 1454–1458.

DOI: 10.1016/j.chaos.2005.11.073

Google Scholar

[9] G.H. Li, Modified projective synchronization of chaotic system, Chaos, Solitons, Fractals, 32(5), 2007, PP: 1786-1790.

DOI: 10.1016/j.chaos.2005.12.009

Google Scholar

[10] Lu J, Wu X, Han X, Lu J, Adaptive feedback synchronization of a unified chaotic system. Phys Lett A, 329, 2004, PP: 327–333.

DOI: 10.1016/j.physleta.2004.07.024

Google Scholar

[11] Park JH, Adaptive synchronization of a unified chaotic systems with an uncertain parameter. International Journal of Nonlinear Sciences and Numerical Simulation , 6, 2005, PP: 201–206.

DOI: 10.1515/ijnsns.2005.6.2.201

Google Scholar

[12] Guan Z. H, Chen, G. & Ueta, T. On impulsive control of a periodically forced chaotic pendulum system. IEEE Trans Automat Contr, 45, 2000, PP: 1724-1727.

DOI: 10.1109/9.880633

Google Scholar

[13] Jing Yao, Zhi-Hong Guan, and David J. Hill, Adaptive Switching Control and Synchronization of a Class of Nonlinear Systems. 43rd IEEE Conference on Decision and Control. 2004, PP: 2065-(2070).

DOI: 10.1109/cdc.2004.1430352

Google Scholar