Bio-Inspired Organic-Inorganic Composite Coatings for Implants via a Micro-Dispensing Technique

Article Preview

Abstract:

nanohydroxyapatite (nHA) and collagen were utilized to fabricate the bio-inspired organic-inorganic composite coating (OICC) via the Drop-on-Demand (DoD) micro-dispensing technique, which could flexibly construct multi-layer structures with varied materials composition within a layer and /or among layers reliably. This technique has been further investigated on its capability of OICC fabrication with regards to various materials (hydroxyapatite and collagen) as well as its dispensing parameters. A four-layered structure was formed, with the sequence of nHA-collagen-nHA-collagen from bottom to top. The dispensing parameters were also investigated with regards to the characteristics of the OICC fabrication. The coating was then subjected to various characterizations including scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and adhesion test. SEM and XRD results revealed that the DoD micro-dispensing technique did not change the morphology and phase of these two coating materials. And the results of EDS further demonstrated the corresponding elemental distributions within the four-layered coating structure which demonstrated the feasibility of the DoD micro-dispensing technique for the fabrication of thin-layered OICC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

662-672

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wang H, Lin CJ, Hu R, Zhang F, Lin LW, A novel nano-micro structured octacalcium phosphate/protein composite coating on titanium by using an electrochemically induced deposition, J Biomed Mater Res Part A. 87 (2008) 698-705.

DOI: 10.1002/jbm.a.31653

Google Scholar

[2] de Jonge LT, Leeuwenburgh SC, Wolke JG, Jansen JA, Organic–inorganic surface modifications for titanium implant surfaces, Pharmaceut Res. 25 (2008) 2357-2369.

DOI: 10.1007/s11095-008-9617-0

Google Scholar

[3] Di Lullo GA, Sweeney SM, Körkkö J, Ala-Kokko L and San Antonio JD, Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen, J Biol Chem. 277 (2002) 4223–4231.

DOI: 10.1074/jbc.m110709200

Google Scholar

[4] Lickorish D, Ramshaw JA, Werkmeister JA, Glattauer V, Howlett CR, Collagen-hydroxyapatite composite prepared by biomimetic process, J Biomed Mater Res Part A. 68A (2004) 19-27.

DOI: 10.1002/jbm.a.20031

Google Scholar

[5] Kim HW, Kim HE, Salih V, and Knowles JC, Sol–gel modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses, J of Biomed Mater Res A. 74(2005) 294–305.

DOI: 10.1002/jbm.a.30191

Google Scholar

[6] Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W, Coating of titanium implants with collagen, RGD peptide and chondroitin sulphate, Biomaterials. 27 (2006) 5561-71.

DOI: 10.1016/j.biomaterials.2006.06.034

Google Scholar

[7] Morra M, Cassinelli C, Meda L, Fini M, Giavaresi G, Giardino R, Surface analysis and effects on interfacial bone microhardness of collagencoated titanium implants: a rabbit model, Int J Oral Max Impl. 20 (2005) 23-30.

Google Scholar

[8] Schliephake H, Aref A, Scharnweber D, Bierbaum S, Roessler S, Sewing A, Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation, Clin Oral Implan Res. 16 (2005) 563-9.

DOI: 10.1111/j.1600-0501.2005.01143.x

Google Scholar

[9] Bernhardt R, van den Dolder J, Bierbaum S, Beutner R, Scharnweber D, Jansen J, Osteoconductive modifications of Ti-implants in a goat defect model: characterization of bone growth with SR μCT and histology, Biomaterials. 26 (2005) 3009-19.

DOI: 10.1016/j.biomaterials.2004.08.030

Google Scholar

[10] Geibler U, Hempel U, Wolf C, Scharnweber D, Worch H, Wenzel KW, Collagen type I-coating of Ti6Al4V promotes adhesion of osteoblasts, J Biomed Mater Res 51 (2000) 752-760.

DOI: 10.1002/1097-4636(20000915)51:4<752::aid-jbm25>3.0.co;2-7

Google Scholar

[11] Roehlecke C, Witt M, Kasper M, Schulze E, Wolf C, Hofer A, and Funk RHW, Synergistic effect of titanium alloy and collagen type I on cell adhesion, proliferation and differentiation of osteoblast-like cells, Cells tissues Organs. 168 (2001).

DOI: 10.1159/000047833

Google Scholar

[12] Wahl DA and Czernuszka JT, Collagen-hydroxyapatite composites for hard tissue repair, European Cells and Materials. 11 (2006) 43-56.

DOI: 10.22203/ecm.v011a06

Google Scholar

[13] Rammelt S, Neumann M, Hanisch U, Reinstorf A, Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites, J Biomed Mater Res A. 73 (2005) 284-294.

DOI: 10.1002/jbm.a.30263

Google Scholar

[14] Hempel U, Reinstorf A, Poppe M, Fischer U, Gelinsky M, Pompe W, Wenzel KW, Proliferation and differentiation of osteoblasts on biocement D modified with collagen type I and citric acid, J Biomed Mater Res B. 71 (2004) 130-143.

DOI: 10.1002/jbm.b.30082

Google Scholar

[15] Geesink RG, Osteoconductive coatings for total joint arthroplasty, Clin Orthop Relat R. 395 (2002) 53-65.

DOI: 10.1097/00003086-200202000-00007

Google Scholar

[16] Kumar RR, Wang M, Functionally graded bioactive coatings of hydroxyapatite/ titanium oxide composite system, Mater Lett. 55 (2001) 133-137.

DOI: 10.1016/s0167-577x(01)00635-8

Google Scholar

[17] Hashimoto Y, Kawashima M, Hatanaka R, Kusunoki M, Nishikawa H, Hontsu S, and Nakamura M, Cytocompatibility of calcium phosphate coatings deposited by an ArF pulsed laser, J Mater Sci-Mater M. 19 (2008) 327-333.

DOI: 10.1007/s10856-006-0107-9

Google Scholar

[18] Arias JL, Mayor MB, Pou J, Leng Y, Leon B, and Perez-Amor M, Micro- and nano-testing of calcium phosphate coatings produced by pulsed laser deposition, Biomaterials. 24 (2003) 3403-3408.

DOI: 10.1016/s0142-9612(03)00202-3

Google Scholar

[19] Yang Y, Kim KH, and Ong JL, A review on calcium phosphate coatings produced using a sputter process—an alternative to plasma spraying, Biomaterials. 26 (2005) 327-337.

DOI: 10.1016/j.biomaterials.2004.02.029

Google Scholar

[20] Wolke JG, Van der Waerden JP, Schaeken HG, and Jansen JA, In vivo dissolution behavior of various RF magnetron sputtered Ca–P coatings on roughened titanium implants, Biomaterials. 24 (2003) 2623-2629.

DOI: 10.1142/9789814291064_0117

Google Scholar

[21] Choi JM, Kim HE, and Lee IS, Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate, Biomaterials. 21 (2000) 469-473.

DOI: 10.1016/s0142-9612(99)00186-6

Google Scholar

[22] Hayakawa T, Yoshinari M, Kiba H, Yamamoto H, Nemoto K, and Jansen JA, Trabecular bone response to surface roughened and calcium phosphate (Ca–P) coated titanium implants, Biomaterials. 23 (2002) 1025-1031.

DOI: 10.1016/s0142-9612(01)00214-9

Google Scholar

[23] Lee EW, Phil GC, Janine O, Lawrence S, U.S. Patent WO/079985 (2003).

Google Scholar

[24] Huang J, Jayasinghe SN, Best SM, Edirisinghe MJ, Brooks RA, and Bonfield W, Electrospraying of a nano-hydroxyapatite suspension, J Mater Sci. 39 (2004) 1029-1032.

DOI: 10.1023/b:jmsc.0000012937.85880.7b

Google Scholar

[25] Uematsu I, Matsumoto H, Morota K, Minagawa M, Tanioka A, Yamagata Y, and Inoue K, Surface morphology and biological activity of protein thin films produced by electrospray deposition, J Colloid Interf Sci. 269 (2004) 336-340.

DOI: 10.1016/j.jcis.2003.08.069

Google Scholar

[26] Thian ES, Huang J, Ahmad Z, Edirisinghe MJ, Jayasinghe SN, Ireland DC, Brooks RA, Rushton N, Best SM, and Bonfield W, Influence of nanohydroxyapatite patterns deposited by electrohydrodynamic spraying on osteoblast response, J Biomed Mater Res A. 85 (2008).

DOI: 10.1002/jbm.a.31564

Google Scholar

[27] Muller L, Conforto E, Caillard D, Muller FA, Biomimetic apatite coatings -carbonate substitution and preferred growth orientation, Biomol Eng. 24 (2007) 462-466.

DOI: 10.1016/j.bioeng.2007.07.011

Google Scholar

[28] Chang R, Nam J, and Sun W, Direct cell writing of 3d microorgan for in vitro pharmacokinetic model, Tissue Eng Part C: Methods. 14 (2008) 157-166.

DOI: 10.1089/ten.tec.2007.0392

Google Scholar

[29] Wang D, Chen C, He T, Lei T, Hydroxyapatite coating on Ti6Al4V alloy by a sol–gel method, J Mater Sci-Mater M. 19 (2008) 2281-2286.

DOI: 10.1007/s10856-007-3338-5

Google Scholar

[30] Fan Y, Duan K, and Wang R, A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization, Biomaterials. 26 (2005) 1623-1632.

DOI: 10.1016/j.biomaterials.2004.06.019

Google Scholar

[31] Teng SH, Lee EJ, Park CS, Choi WY, Shin DS, Kim HE, Bioactive nanocomposite coatings of collagen/hydroxyapatite on titanium substrates, J Mater Sci-Mater M. 19 (2008) 2453-2461.

DOI: 10.1007/s10856-008-3370-0

Google Scholar

[32] Walter D, Niles P, Coassin J, Piezo- and solenoid valve-based liquid dispensing for miniaturized assays, ASSAY and Drug Development Technologies. 3 (2005) 189-202.

DOI: 10.1089/adt.2005.3.189

Google Scholar

[33] Nakashima Y, Hayashi K, Inadome T, Uenoyama K, Hara T, Kanemaru T, Sugioka Y, Noda I, Hydroxyapatite coating on titanium arc sprayed titanium implants, J Biomed Mater Res. 35 (1997) 287-98.

DOI: 10.1002/(sici)1097-4636(19970605)35:3<287::aid-jbm3>3.0.co;2-d

Google Scholar

[34] Shi DL, Wen XJ, Introduction to Biomaterials: Bioceramic Processing, World Scientific Publishing, Beijing (2006).

Google Scholar

[35] Hirota K, Nishihara K, Tanaka H, Pressure Sintering of Apatite-Collagen Composite. Bio-Medical Materials and Engineering, Biomed Mater Eng. 3 (1993) 147-151.

DOI: 10.3233/bme-1993-3304

Google Scholar

[36] Wennerberg A, Albrektsson T, Effects of titanium surface topography on bone integration: a systematic review, Clin Oral Implan Res. 20 (2009) 172-184.

DOI: 10.1111/j.1600-0501.2009.01775.x

Google Scholar