Improved Tensile Strength of Carbon Nanotube Reinforced Aluminum Composites Processed by Powder Metallurgy

Article Preview

Abstract:

Carbon nanotube (CNT) reinforced aluminum (Al) composites were synthesized using the powder metallurgy (P/M) technique, combined with hot extrusion and hot rolling. 0-2.0wt.% of CNTs were added as reinforcements. The effect of CNTs on the mechanical properties of Al was investigated and a significant enhancement in tensile strength was obtained compared with the pure matrix. The improved strength was analyzed based on (i) Orowan strengthening, (ii) thermal mismatch between CNTs and matrix, and (iii) load partition effect due to the CNTs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

651-656

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Fiedler, F.H. Gojny, M.H.G. Wichmann, M.C.M. Nolte and K. Schulte: Compos. Sci. Technol. Vol. 66 (2006), p.3115.

Google Scholar

[2] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[3] S. Subramoney: Adv. Mater. Vol. 10 (1998), p.1157.

Google Scholar

[4] C.N.R. Rao: Chem. Phys. Vol. 2 (2001), p.78.

Google Scholar

[5] E.W. Wong: Science Vol. 277 (1997), p. (1971).

Google Scholar

[6] J.Y. Huang, S. Chen, Z.Q. Wang, K. Kenpa, Y.M. Wang, S.H. Jo, G. Chen, M.S. Dresselhaus and Z.F. Ren: Nature, Vol. 439 (2006), p.281.

Google Scholar

[7] R. George, K.T. Kashyap, R. Rahul and S. Yamdagni: Scr. Mater. Vol. 53 (2005), p.1159.

Google Scholar

[8] J.Z. Liao and M.J. Tan: Mat. Sci. Forum Vol. 690 (2011), p.294.

Google Scholar

[9] J.Z. Liao and M.J. Tan: Mat. Lett. Vol. 65 (2011), p.2742.

Google Scholar

[10] J.Z. Liao and M.J. Tan: Powder Technol. Vol. 208 (2011), p.42.

Google Scholar

[11] H.M. Li, F.Y. Cheng, A.M. Duft and A. Adronov: JACS., Vol. 127 (2005), p.14518.

Google Scholar

[12] Z. Li, Y.Q. Dong, M. Häussler, J.W.Y. Lam, Y.P. Dong, L.J. Wu, K.S. Wong and B.Z. Tang: J. Phys. Chem. B Vol. 110 (2006), p.2302.

Google Scholar

[13] Y.C. Jung, N.G. Sahoo and J.W. Cho: Macromol. Rapid Commun. Vol. 27 (2006), p.126.

Google Scholar

[14] A. Needleman, T.L. Borders, L.C. Brinson, V.M. Flores and L.S. Schadler: Compos. Sci. Technol. Vol. 70 (2010), p.2207.

Google Scholar

[15] K. König, S. Novak, A. Ivekovic, K. Rade, D.C. Meng, A.R. Boccaccini and S. Kobe: J. Eur. Ceram. Soc. Vol. 30 (2010), p.1131.

Google Scholar

[16] M. Mazaheri, D. Mari, Z.R. Hesabi, R. Schaller and G. Fantozzi: Compos. Sci. Technol. Vol. 71 (2011), p.939.

Google Scholar

[17] S.F. Hassan, K.S. Tun and M. Gupta: J. Alloys Compd. Vol. 509 (2011), p.4341.

Google Scholar

[18] K. Morsi, A.M.K. Esawi, S. Lanka, A. Sayed and M. Taher: Compos. Part A Vol. 41 (2010), p.322.

Google Scholar

[19] Z. Zhang and D.L. Chen: Scr. Mater. Vol. 54 (2006), p.1321.

Google Scholar

[20] R.J. Arsenault and N. Shi: Mat. Sci. Eng. Vol. 81 (1986), p.175.

Google Scholar

[21] S.N. Hari: Handbook of thin film materials: Nanomaterials and magnetic thin films. Vol. 5 (2002) Academica press.

Google Scholar

[22] N.I.S. Inoue, T. Susuki, T. Uematsu and K. Kaneko: J. Phys. Chem. B Vol. 102 (1998), p.4689.

Google Scholar

[23] K. Xia: J. Mater. Sci., Vol. 29 (1994), p.5219.

Google Scholar