Bending of Thermoviscoelastic Functionally Graded Materials Beams

Article Preview

Abstract:

According to the constitutive relation of linear thermovisoelasticity, with the help of Laplace transformation method and the introduction of structure functions and thermal functions, the mathematical model and its corresponding variational principle for thermoviscoelastic FGM beams are set up on the basis of the assumption that plane section remains plane and normal to the beam axis. Using Laplace transformation method, the deflection and the stress distribution are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 503-504)

Pages:

305-308

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Shen, M.B. Bever: J. Mater. Sci Vol. 7(1972), p.741.

Google Scholar

[2] M. Koizumi: Functionally Gradient Mater Vol. 34(1993), p.3.

Google Scholar

[3] R.M. Christensen: Theory of Viscoelasticity: An Introduction (Academic Press, New York, 1982).

Google Scholar

[4] J.M. Leitman, G.M.C. Fisher: The Linear Theory of Viscoelasticity (Springer Verlag, Berlin, 1973).

Google Scholar

[5] G.H. Paulino, Z. H. Jin: ASME. J. Appl. Mech Vol. 68(2001), p.129.

Google Scholar

[6] G.H. Paulino, Z. H. Jin: ASME. J. Appl. Mech Vol. 68(2001), p.284.

Google Scholar

[7] H.S. Shen: Adv. Mech Vol. 34(2004), p.53.

Google Scholar

[8] M.R. Eslami, R. Javaheri: J. Therm. Stress Vol. 22(1999), p.527.

Google Scholar

[9] R. Javaheri, M.R. Eslami: J. AIAA Vol. 40(2002), p.162.

Google Scholar