Segregation Diagram of a Mixture of Particles with Different Sizes and Densities

Article Preview

Abstract:

Segregation in granular materials has been studied by means of Monte Carlo simulation. The mechanism of segregation in a binary mixture of particles with different sizes and densities has been investigated for shaking and rotating processes in two-dimensional space. From the simulations we have obtained the segregation diagrams for shaking and rotating. These diagrams show what type of segregation occurs in a binary mixture with given values of the size ratio and the density ratio. From the diagrams we can also know what conditions are required to avoid segregation and mix uniformly a mixture of particles with different sizes and densities by the shaking and fast rotating processes. It is also shown that in the shaking process there is a critical size-ratio above which large-sized particles always segregate upward irrespective of the density ratio. Some implications of the segregation diagrams for shaking and rotating obtained by our simulations are discussed with consideration for real granular materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-159

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. C. Williams, The Segregation of Particulate Materials. A Review, Powder Technol. 15 (1976) 245-251.

Google Scholar

[2] J. Duran, J. Rajchenbach, E. Clement, Arching Effect Model for Particle Size Segregation, Phys. Rev. Lett. 70.

DOI: 10.1103/physrevlett.70.2431

Google Scholar

[16] (1993) 2431-2434.

Google Scholar

[3] J. B. Knight, H. M. Jaeger, S. R. Nagel, Vibration-Induced Size Segregation in Granular Media: The Convection Connection, Phys. Rev. Lett. 70.

DOI: 10.1103/physrevlett.70.3728

Google Scholar

[24] (1993) 3728-3731.

Google Scholar

[4] J. Duran, T. Mazozi, E. Clement, J. Rajchenbach, Size Segregation in a two-dimensional sandpile: Convection and arching effects, Phys. Rev. E 50.

DOI: 10.1103/physreve.50.5138

Google Scholar

[6] (1994) 5138-5141.

Google Scholar

[5] E. Clement, J. Rajchenbach, J. Duran, Mixing of a Granular Material in a Bidimensional Rotating Drum, Europhys. Lett. 30.

DOI: 10.1209/0295-5075/30/1/002

Google Scholar

[1] (1995) 7-12.

Google Scholar

[6] F. Cantelaube and D. Bideau, Radial Segregation in a 2d Drum: Experimental Analysis, Europhys. Lett. 30.

DOI: 10.1209/0295-5075/30/3/002

Google Scholar

[3] (1995) 133-138.

Google Scholar

[7] D. Brone, F. J. Muzzio, Size segregation in vibrated granular systems: A reversible process, Phys. Rev. E 56.

DOI: 10.1103/physreve.56.1059

Google Scholar

[1] (1997) 1059-1063.

Google Scholar

[8] K. M. Hill, A. Caprihan, J. Kakalios, Axial segregation of granular media rotated in a drum mixer: Pattern evolution, Phys. Rev. E 56.

DOI: 10.1103/physreve.56.4386

Google Scholar

[4] (1997) 4386-4393.

Google Scholar

[9] A. Rosato, F. Prinz, K. J. Standburg, R. Swendsen, Monte Carlo Simulation of Particulate Matter Segregation, Powder Technol. 49 (1986) 59-69.

DOI: 10.1016/0032-5910(86)85005-7

Google Scholar

[10] A. Rosato, K. J. Strandburg, F. Prinz, R. H. Swendsen, Why the Brazil Nuts Are on Top: Size Segregation of Particulate Matter by Shaking, Phys. Rev. Lett. 58.

DOI: 10.1103/physrevlett.58.1038

Google Scholar

[10] (1987) 1038-1040.

Google Scholar

[11] A. D. Rosato, Y. Lan, D. T. Wang, Vibratory particle size sorting in multi-component systems, Powder Technol. 66 (1991) 149-160.

DOI: 10.1016/0032-5910(91)80096-2

Google Scholar

[12] R. Jullien, P. Meakin, A. Pavlovitch, Three-Dimensional Model for Particle-Size Segregation by Shaking, Phys. Rev. Lett. 69.

DOI: 10.1103/physrevlett.69.640

Google Scholar

[4] (1992) 640-643.

Google Scholar

[13] G. C. Barker, A. Mehta, M. J. Grimson, Comment on Three-Dimensional Model for Particle-Size Segregation by Shaking, Phys. Rev. Lett. 70.

DOI: 10.1103/physrevlett.70.2194

Google Scholar

[14] (1993) 2194-2195.

Google Scholar

[14] G. Baumann, I. M. Janosi, D. E. Wolf, Particle Trajectories and Segregation in a Two-Dimensional Rotating Drum, Europhys. Lett. 27.

DOI: 10.1209/0295-5075/27/3/006

Google Scholar

[3] (1994) 203-208.

Google Scholar

[15] T. Ohtsuki, D. Kinoshita, Y. Takemoto, A. Hayashi, Segregation by Shaking in Cohesionless Granular Mixtures: Effects of Particle Size and Density, J. Phys. Soc. Jpn. 64.

DOI: 10.1143/jpsj.64.430

Google Scholar

[2] (1995) 430-434.

Google Scholar

[16] G. H. Ristow, Dynamics of granular materials in a rotating drum, Europhys. Lett. 34.

Google Scholar

[4] (1996) 263-268.

Google Scholar