The Effects of Li-Site Substitution with Co on the Electrochemical Performance of LiMnPO4/C

Article Preview

Abstract:

Li(1-2x)CoxMnPO4/C composite cathode materials for lithium ion battery are synthesized by sol-gel method with following heat-treatment in the air. Environment scanning electron microscopy measurements show that the particles are irregular and inhomogeneous, and that particle sizes slightly enlarge with the elevation of sintering temperatures. Powder X-ray diffraction analysis indicates that the samples are olivine-structured. Electrochemical tests indicate that the optimal sintering temperature registers 400 °C, and that the cyclic ability of LiMnPO4 is greatly improved by doping Co2+. When tested at 0.02 C rate between 2.8 and 4.4 V, the initial discharge capacity of the sample with initial composition of x=0.07 sintered at 400 °C reaches 112.2 mAh/g , after 70 cycles, the capacities remain 58.8mAh/g.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

1009-1013

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Konarova and I. Taniguchi: Mater. Res. Bull. Vol. 43 (2008), p.3305

Google Scholar

[2] A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough: J. Electrochem. Soc. Vol. 144 (1997), p.1188

Google Scholar

[3] D. Wang, H. Buqa, M. Crouzet, G. Deghenghi, T. Drezen, I. Exnar, N. H. Kwon, J. H. Miners, L. Poletto and M. Gratzel: J. Power Sources. Vol. 189 (2009), p.624

DOI: 10.1016/j.jpowsour.2008.09.077

Google Scholar

[4] H. Xie and Z. Zhou: Electrochim. Acta. Vol. 51 (2006), p. (2063)

Google Scholar

[5] S. Y. Chung, J. T. Bloking and Y. M. Chiang: Nat. Mater. Vol. 2 (2002), p.123

Google Scholar

[6] R. Yang, X. Song, M. Zhao and F. Wang: J. Alloys Compd. Vol. 468 (2009), p.365

Google Scholar

[7] H. Liu, Q. Cao, L. J. Fu, C. Li, Y. P. Wu and H. Q. Wu: Electrochem. Commun. Vol. 8 (2006), p.1553

Google Scholar

[8] C. Delacourt, C. Wurm, L. Laffont, J. B. Leriche and C. Masquelier: Solid State Ionics. Vol. 177 (2006), p.333

DOI: 10.1016/j.ssi.2005.11.003

Google Scholar

[9] T. H. Teng, M. R. Yang, S. H. Wu and Y. P. Chiang: Solid State Commun. Vol. 142 (2007), p.389

Google Scholar

[10] Y. Wang, Y. Yang, X. Hu, Y. Yang and H. Shao: J. Alloys Compd. Vol. 481 (2009), p.590

Google Scholar

[11] Y. Ge, X. Yan, J. Liu, X. Zhang, J. Wang, X. He, R. Wang and H. Xie: Electrochim. Acta. Vol. 55 (2010), p.5886

Google Scholar

[12] G. Li, H. Azuma and M. Tohda: Electrochem. Solid State Lett. Vol. 5 (2002), p. A135

Google Scholar

[13] H. S. Fang, Z. Y. Pan, L. P. Li, Y. Yang, G. F. Yan, G. S. Li and S. Q. Wei: Electrochem. Commun. Vol. 10 (2008), p.1071

Google Scholar

[14] D. Y. Wang, H. Buqa, M. Crouzet, G. Deghenghi, T. Drezen, I. Exnar, N. H. Kwon, J. H. Miners, L. Poletto and M. Gratzel: J. Power Sources. Vol. 189 (2009), p.624

DOI: 10.1016/j.jpowsour.2008.09.077

Google Scholar

[15] A. Yamada and S. C. Chung: J. Electrochem. Soc. Vol. 148 (2001), p. A960

Google Scholar

[16] J. Molenda, W. Ojczyk and J. Marzec: J. Power Sources. Vol. 174 (2007), p.689

Google Scholar

[17] C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J. B. Leriche, M. Morcrette, J. M. Tarascon and C. Masquelier: J. Electrochem. Soc. Vol. 152 (2005), p. A913

DOI: 10.1149/1.1884787

Google Scholar

[18] D. Y. Wang, C. Y. Ouyang, T. Drezen, I. Exnar, A. Kay, N. H. Kwon, P. Gouerec, J. H. Miners, M. K. Wang and M. Gratzel: J. Electrochem. Soc. Vol. 157 (2010), p. A225

DOI: 10.1149/1.3271112

Google Scholar

[19] G. Yang, H. Ni, H. D. Liu, P. Gao, H. M. Ji, S. Y. J. Roy, J. Pinto and X. F. Jiang: Journal of Power Sources. Vol. 196 (2011), p.4747

Google Scholar

[20] C. A. J. Fisher, V. M. H. Prieto and M. S. Islam: Chem. Mater. Vol. 20 (2008), p.5907

Google Scholar

[21] J. Xu, G. Chen, Y. J. Teng and B. Zhang: Solid State Commun. Vol. 147 (2008), p.414

Google Scholar