[1]
Atony KC, Antony AN, Bhansali KJ, Messler RW, Miller AE, Price MO (1983) in: Hardfacing, ASM, Handbook6: 771
Google Scholar
[2]
Smith BJ, Erskine CP, Hartranft RJ,Marder AR (1992) Corrosion-Fatigue Circumferential Cracking in Cr-Mo Low Alloy Boiler Tube Steels: Part 2—Laboratory Simulation, J. Eng. Mater. Technol 114(3): 270~277
DOI: 10.1115/1.2904172
Google Scholar
[3]
Chandel RS (2001) Hardfacing consumables and their characteristics for mining and mineral processing industry, Indian Weld. J:26–34
DOI: 10.22486/iwj.v34i1.178619
Google Scholar
[4]
Gahr KZ (1987) Microstructure and Wear of Materials, Elsevier, Oxford
Google Scholar
[5]
Persson A,Hogmark S,Bergström J (2005) Thermal fatigue cracking of surface engineered hot work tool steels. Surface & Coatings Technology 191: 216–227.
DOI: 10.1016/j.surfcoat.2004.04.053
Google Scholar
[6]
Wei SHZH, Zhu JH,Xu LJ (2006) Effects of carbon on microstructures and properties of high vanadium high-speed steel. Materials and Design 27:58~63
DOI: 10.1016/j.matdes.2004.09.027
Google Scholar
[7]
Hwang KC, Lee S, Lee HC (1998) Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls Part I: Microstructural analysis. Materials Science and Engineering A254:282–295
DOI: 10.1016/s0921-5093(98)00626-1
Google Scholar
[8]
Hwang KC, Lee S, Lee HC (1998) Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls Part II. Fracture behavior. Materials Science and Engineering A254:296–304
DOI: 10.1016/s0921-5093(98)00694-7
Google Scholar
[9]
Persson A, Hogmark S, Bergström J (2004) Simulation and evaluation of thermal fatigue cracking of hot work tool steels. International Journal of Fatigue 26:1095–1107.
DOI: 10.1016/j.ijfatigue.2004.03.005
Google Scholar
[10]
Persson A, Hogmark S, Bergström J (2004) Failure modes in field-tested brass die casting dies. Journal of Materials Processing Technology 148:108–118.
DOI: 10.1016/j.jmatprotec.2004.01.052
Google Scholar
[11]
Zhao XCH(2003) Research on Cr5-Type Forged Steel for Backup Roll Heat Treatment of metals 28(6):26~28
Google Scholar
[12]
Chang KK, Park JI, Lee S (2005) Effects of alloying elements on microstructure, hardness, and fracture toughness of centrifugally cast high-speed steel rolls. Metallurgical and Materials Transactions 36A(01):87-97.
DOI: 10.1007/s11661-005-0141-0
Google Scholar
[13]
Manganello SJ (1990) in: Corbett RB Ed., Rolls for the Metal Working Industries, Iron and Steel Society, Warrendale, PA: 227.
Google Scholar
[14]
De Barbadillo JJ, Trozzi CJ (1981) Mechanism of banding in hot strip mill work rolls. Iron and Steel Engineer:63-72
Google Scholar
[15]
Smith BJ, Erskine CP, Hartranft RJ (1995) High-Temperature Corrosion-Fatigue Circumferential Cracking life Evaluation Procedure for low Alloy Cr-Mo Boiler Tube Steel. Materials characterization 34:81-86
DOI: 10.1016/1044-5803(94)00052-m
Google Scholar
[16]
Birol Y (2010) Materials Science and Engineering A 527 : 6091–6097
Google Scholar
[17]
Fuchs KD (2001) Hot-work tool steels with improved properties for die casting application, in: J. Bergström (Ed.), Proceedings of the ITC-VI, Karlstad :15–22.
Google Scholar
[18]
Duh D, Schruff I (2002) Optimized heat treatment and nitriding parameters for a new hot-work tool steel, in: J. Bergström Ed., Proceedings of the ITC-VI, Karlstad: 479–496.
Google Scholar
[19]
Roche P, Beaton M, Klarenfjord B, Sandberg O (1997) Toughness and ductility your die needs both, in: Trans. 19th Int. Die Casting Congress and Exposition, NADCA, Minneapolis:223–232.
Google Scholar