Low-Temperature Synthesis of Visible Light Driven TiO2 Microcrystal

Article Preview

Abstract:

The TiO2 microcrystal was prepared under low temperature using tetrabutyl titanate as raw material. The TiO2 catalyst was characterized by XRD, SEM, TEM, FITR, and PL. At the same time, the degradation performance of TiO2 microcrystal on methyl orange was studied in ordinary sunlight conditions. The experiments show that TiO2 microcrystal at 85°C with 50 mL nitric acid as a crystal control agent can be obtained. Meanwhile, the light absorption of catalyst can be extended to the visible light; the methyl orange can be degraded within 100 min under visible radiation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

1927-1932

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Amy L. Linsebigler, Guangquan. Lu and John T. Yates: Chemical Reviews Vol. 5 (1995), p.735

Google Scholar

[2] Y B Xie, C W Yuan and X Z Li: Colloid Surface A Vol. 252 (2005), p.87

Google Scholar

[3] R. Asahi, T. Morikawa , T. Ohwaki, et al: Science Vol. 293(2001), p.269

Google Scholar

[4] Mills A, Lepre A, Elliott, etal:Journal of Photochemistry and Photobiology A: Chemistry Vol. 160(2007), p.213

Google Scholar

[5] Baskaran S,Song L,Liu J,etal: Journal of America Cream Society Vol. 81 (19982), p.401

Google Scholar

[6] Daoxin Wu, Qiyuan Chen, Jie Li, etal: The Chinese Journal of Nonferrous Metals Vol. 18 (2008), p.171 (In Chinese)

Google Scholar

[7] Hong Liu, Wenhua Leng, Hejin Wu, etal: Chinese journal of catalysis Vol. 21 (2000), p.56 (In Chinese)

Google Scholar

[8] Haiyan Ding, Yuping Wang, Panyin Peng, etal: journal if Nanjin normal university (natural science) Vol. 27 (2004), p.118 (In Chinese)

Google Scholar

[9] Khodja,Sehilit,Polichowskij F, et al:Journal of Phtochem Photobiol A: Chem Vol. 141 (2001), p.231

Google Scholar

[10] Wenhua Leng, Li Zhang, Shaoan Cheng, et al: Chinese Journal of Environmental science Vol. 21(2000),p.46 (In Chinese)

Google Scholar

[11] Aruna S T, Tirosh S and Zaban A: Journal of Material Cemica Vol. 10 (2000), p.2388

Google Scholar

[12] Qinghong Zhang, Lian Gao and Jingkun Guo:Applied Catalysis B: Environmental Vol. 26 (2000),p.207

Google Scholar

[13] Lionel Vayssieres, Anders Hagfeldt and Sten Eric Lindquist: Pure and Appl Chem Vol. 72 (2000), p.47

Google Scholar

[14] Li yang Ma, Faqin Dong, Mianxin Song, etal:Journal of Functional Material Vol. 41(2010), 755 (In Chinese)

Google Scholar

[15] Hui Wang, DeyiLv, ChanyongXun,etal:chemistry Vol. 67(2004),p.1(In Chinese)

Google Scholar

[16] Zhongcheng Zhou, Jianming Ruan, Jianpeng Zou, etal: Chinese Journal of Rare Metals Vol. 30(2006), p.653 (In Chinese)

Google Scholar

[17] Changhong Qu, Wuyou Fu and Haibin Yang: Journal of Jilin University Vol. 47(2009), p.811 (In Chinese)

Google Scholar

[18] XiaomingFan, YunjunNong, ZhuoruoYan, etal: Inorganic Chemicals Industry Vol. 35 (2003), P 24(In Chinese)

Google Scholar

[19] Zheng Nong, XimingHuan, JiachengZhong,eta: Journal of Functional Material Vol. 35 (2004), p.311 (In Chinese)

Google Scholar

[20] Xiaoquan Chen, Guobang Gu and Huanbin Liu, et al: Journal of American Ceramic Society Vol. 87 (2004), p.1035

Google Scholar

[21] Vayssieres L, Hagfeldt A and Lindquist S E:Pure and Appl .Chem Vol. 72 (2000), p.47

Google Scholar

[22] Aruna S T, Tirosh S and Zaban A: Journal of Materials Chemistry Vol. 10 (2000), p.2388

Google Scholar

[23] LiminZhou, ZhirongLiu and QunwuHuan: Semiconductor optoelectronics Vol.30 (2009), p.562 (In Chinese)

Google Scholar

[24] Xuxu Zheng, HuangYu and Zhongyi Yin: Journal of materials engineering Vol. 10(2008), p.39 (In Chinese)

Google Scholar