[1]
Cavaliere A, de Joannon M, Mild combustion[J]. Progress in Energy and Combustion Science, 2004, 30(4): 329-366.
DOI: 10.1016/j.pecs.2004.02.003
Google Scholar
[2]
F J Weinberg. Combustion temperatures: The future?[J]. Nature, 1971, 233: 239-241.
Google Scholar
[3]
N R Overman. Flameless combustion and application for gas turbine engines in the aerospace industry[D]. University of Cincinnati, (2006).
Google Scholar
[4]
A Milani, J G Wünning. Flameless oxidation technology[J]. Advanced Combust and Aerothermal Tech, 2007, 343-352.
DOI: 10.1007/978-1-4020-6515-6_26
Google Scholar
[5]
R Weber, J P Smart, W V Kamp. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air[J]. Proc Combust Inst, 2005, 30: 2623-2629.
DOI: 10.1016/j.proci.2004.08.101
Google Scholar
[6]
Xianjun XING. Research on Normal Temperature Air Flameless Combustion and its Appliaction to Reconstructing Boiler from Coal-burning to Gas-burning[D]. Hefei: University of Science and Technology of China, 2006(in chinese).
Google Scholar
[7]
Yufeng CUI, Xuan LÜ, Gang XU, et al. Dynamic analysis of a flameless combustion model combustor[J]. Science China: Technological Sciences. 2010, . 53 (8): 2291-2298 (in chinese).
DOI: 10.1007/s11431-010-4022-4
Google Scholar
[8]
J C MI, P F LI, C G ZHENG. Numerical simulation of flameless premixed combustion with an annular nozzle in a recuperative furnace[J]. Chinese J of Chem Eng, 2010, 18(1): 10-17.
DOI: 10.1016/s1004-9541(08)60316-x
Google Scholar
[9]
J A Wünning, J G Wünning. Flameless oxidation to reduce thermal NO formation[J]. Prog Energ Combust, 1997, 23: 81-94.
DOI: 10.1016/s0360-1285(97)00006-3
Google Scholar
[10]
Y YU, G F WANG, Q Z LIN, et al. Flameless combustion for hydrogen containing fuels[J]. Int J Hydrogen Energ, 2010, 35: 2694-2697.
Google Scholar
[11]
Michael Flamme. New combustion systems for gas turbines (NGT)[J]. Appl Therm Eng, 2004, 24: 1551-1559.
DOI: 10.1016/j.applthermaleng.2003.10.024
Google Scholar
[12]
Marco Derudi, Renato Rota. Experimental study of the mild combustion of liquid hydrocarbons[J]. Proc Combust Inst, 2010, 33: 3325-3332.
DOI: 10.1016/j.proci.2010.06.120
Google Scholar
[13]
M Torresi, S M Camporeale, B Fortunato, et al. Diluted combustion in a aerodynamically staged swirled burner fueled by diesel oil[C]/ Processes and Technologies for a Sustainable Energy, Ischia, 2010, ptse2010. I11: 1-8.
Google Scholar
[14]
P F Li, J C Mi, Dally B B, et al. Progress and recent trend in MILD combustion[J]. Science in China Series E: Technological Sciences, 2011, 54(2): 255-269.
DOI: 10.1007/s11431-010-4257-0
Google Scholar
[15]
Mi Jianchun, Li Pengfei, Dally B B, et al. Importance of Initial Momentum Rate and Air-Fuel Premixing on Moderate or Intense Low Oxygen Dilution (MILD) Combustion in a Recuperative Furnace[J]. Energy & Fuels, 2009, 23(11): 5349-5356.
DOI: 10.1021/ef900866v
Google Scholar
[16]
P F LI, J C MI, Dally B B, et al. Effects of equivalence ratio and mixing pattern of reactants on flameless combustion[J]. Proceedings of the CSEE, 2011, 31(5): 20-27(in Chinese).
Google Scholar
[17]
Qin CHEN. A Study on Reaction Conditions and Characteristics of Mild Combustion of Gas Turbine Combustor Application[D]. Beijing: Chinese Academy of Science, 2010(in Chinese).
Google Scholar
[18]
Zhiguo TANG, Peiyong MA, Yongling LI, et al. Design and Experiment Research of a Novel Pulverized Coal Gasifier Based on Flameless Oxidation Technology[J]. Proceedings of the CSEE, 2010, 30(8): 50-55(in Chinese).
Google Scholar
[19]
Y Levy, F C Lockwood, Tahir Abbas, et al. Low-NOx flameless oxidation combustor for high efficiency gas turbines[R]. FLOXCOM Final Report, 2004: 17-56, 147-150.
Google Scholar
[20]
M. de Joannona, A. Cavaliere, T Faravellic, et al. Analysis of process parameters for steady operations in methane mild combustion technology[J]. Proc Combust Inst, 2005, 30: 2605-2612.
DOI: 10.1016/j.proci.2004.08.190
Google Scholar
[21]
G Q Li, E J Gutmark. Experimental study of flameless combustion in gas turbine combustors. [C] Nevada: 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006, AIAA 2006-546.
DOI: 10.2514/6.2006-546
Google Scholar
[22]
Y Levy, V Sherbaum, P Arfi. Basic thermodynamics of FLOXCOM, the low-NOx gas turbines adiabatic combustor[J]. Applied Thermal Engineering, 2004, 24(): 1593-1605.
DOI: 10.1016/j.applthermaleng.2003.11.022
Google Scholar
[23]
A Cavigiolo, M A Galbiati, A Effuggi, D Gelosa, R Rota. Mild combustion in a laboratory-scale apparatus[J]. Combust. Sci. and Tech., 2003, 175: 1347-1367.
DOI: 10.1080/00102200302356
Google Scholar