Fabrication of AR Film Using Nano-Imprint Process with a Diamond Mold

Article Preview

Abstract:

Owning to the robust characteristics of diamonds, a nano-tip array structured mold was fabricated with diamond, we can then use this mold to produce anti-reflection (AR) films with nanoimprint lithography. Taking advantage of the self-ordered characteristic of anodic aluminum oxide (AAO), we can obtain the diamond mold by depositing a layer of diamond on the AAO using hot filament chemical vapor deposition (HFCVD). Then taking advantage of the high through-put characteristics of nanoimprint lithography, AR films can be mass produced. The AR films were subjected to reflectivity inspections, a 5.5% reduction in reflectivity was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

2072-2075

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.B. Clapham, M.C. Hutley, Reduction of Lens Reflexion by the "Moth Eye" Principle, Nature 244 (1973) 281-282

DOI: 10.1038/244281a0

Google Scholar

[2] S.J. Wilson, M.C. Hutley, On the Light Noise Due to Three-phonon Scattering in a Multi-beam Acousto-optical Modulator Used in a Laser Recorder, Opt. Acta: Int. J. Optics 29 (1982) 993-939

DOI: 10.1080/713820935

Google Scholar

[3] H.Y. Tsai, H.C. Liu, J.H. Chen, C.C. Yeh, Low cost fabrication of diamond nano-tips on porous anodic alumina by hot filament chemical vapor deposition and the field emission effects, Nanotechnology Vol. 22 (2011) 235301

DOI: 10.1088/0957-4484/22/23/235301

Google Scholar

[4] H.Y. Tsai and C.C. Yeh, Suppressed screening effects in curvilinear tetrahedral diamond field emitter arrays fabricated on anodic aluminum oxide, J. Electrochem. Soc. 159 (2012) K1-K4

DOI: 10.1149/2.011201jes

Google Scholar

[5] A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W.Z. Misiolek, Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes, J. Membrane Sci. 319 (2008) 192-198

DOI: 10.1016/j.memsci.2008.03.044

Google Scholar

[6] S. Hwang, S. Jeong, H. Hwang, O. Lee, K. Lee, Fabrication of highly ordered pore array in anodic aluminum oxide, Korean J. Chem. Eng. 19 (2002) 467-473

DOI: 10.1007/bf02697158

Google Scholar

[7] A. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys. 84 (1998) 6023

DOI: 10.1063/1.368911

Google Scholar

[8] H. Masuda, K. Yada, A. Osaka, Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution, Jpn. J. Appl. Phys. 37 (1998) L1340-L1342

DOI: 10.1143/jjap.37.l1340

Google Scholar

[9] P. May, Diamond thin films: a 21st-century material, Philos. T. Roy. Soc. A 358 (2000) 473-495

Google Scholar

[10] D. Das, R. Singh, A review of nucleation, growth and low temperature synthesis of diamond thin films, Int. Mater. Rev. 52 (2007) 29-64

Google Scholar

[11] W. Lee, R. Ji, U. Gösele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nat. Mater. 5 (2006) 741-747

DOI: 10.1038/nmat1717

Google Scholar

[12] H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, M. Yamaguchi, Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells, Jpn.. J. Appl. Phys. 46 (2007) 3333-3336

DOI: 10.1143/jjap.46.3333

Google Scholar

[13] Y. Kanamori, K. Hane, H. Sai, H. Yugami, 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask, Appl. Phys. Lett. 78 (2001) 142

DOI: 10.1063/1.1339845

Google Scholar