Heterogeneous Acid-Catalyzed Hydrolysis of Cellulose

Article Preview

Abstract:

With the world’s focus on reducing our dependency on fossil fuel resources, one of the challenges will be the development of efficient catalysts for selective transformation of cellulosic biomass. Hydrolysis of cellulose to glucose is a key technology for effective use of lignocellulose because glucose can be efficiently converted into various chemicals, biofuels, foods, and medicines. Thus far, substantial efforts have been devoted to the degradation of cellulose but these processes have significant drawbacks. Some of these problems can potentially be overcome with the application of solid acid catalysts. In this paper, recent studies on heterogeneous acid-catalyzed hydrolysis of cellulose are summarized.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

421-425

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Romsaiyud, W. Songkasiri, A. Nopharatana and P. Chaiprasert: Journal of Environmental Sciences-China, Vol. 21 (2009) No.7, p.965

DOI: 10.1016/s1001-0742(08)62369-4

Google Scholar

[2] M. Wada, M. Ike and K. Tokuyasu: Polymer Degradation and Stability, Vol. 95 (2010) No.4, p.543

Google Scholar

[3] N.S. Mosier, C.M. Ladisch and M.R. Ladisch: Biotechnology and Bioengineering, Vol. 79 (2002) No.6, p.610

Google Scholar

[4] J. Li, Y. Yang, H. Chen, F. Jiang, J. Ling, M.C. liu, F.L. Yan and J.J. Xu: Bioprocess and Biosystems Engineering,Vol. 32 (2009) No. 5,p.649

Google Scholar

[5] S. Kumar and R.B. Gupta: Industrial & Engineering Chemistry Research, Vol. 47 (2008) No.23,p.9321

Google Scholar

[6] E.R. Katsunobu, S.H. Saka: The Japan Wood Research Society, Vol. 51 (2005) ,p.148

Google Scholar

[7] A. Abbadi, K.F. Gotlieb,H. Bekkum: Starch-Starke, Vol. 50 (1998) No.1,p.23

Google Scholar

[8] P.L. Dhepe, M. Ohashi, S. Inagaki, M. Ichikawa and A. Fukuoka: Catalysis Letters, Vol. 102 (2005) No.3,p.163

Google Scholar

[9] P.L. Dhepe, A. Fukuoka: Catalysis Survey from Asia, Vol. 11 (2007) No. 4,p.186

Google Scholar

[10] A.Takagaki, M.Sugisawa, D.L. Lu, J.N. Kondo, M. Hara, K. Domen and S. Hayashi: Journal of the American Chemical Society, Vol. 125 (2003) No.18,p.5479

DOI: 10.1021/ja034085q

Google Scholar

[11] A. Takagaki, T. Yoshida, D.L. Lu, J.N. Kondo, M. Hara, K. Domen and S. Hayashi: Journal of Physical Chemistry B, Vol. 108 (2004) No.31,p.1549

Google Scholar

[12] A. Takagaki, D.L. Lu, J.N. Kondo, M. Hara, S. Hayashi and K. Domen: Chemistry of Materials, Vol. 17 (2005) No.10,p.2487

Google Scholar

[13] A. Takagaki, C. Tagusagawa, K. Domen: Chemical Communications, Vol. 42 (2008),p.5363

Google Scholar

[14] M. Toda, A. Takagaki, M. Okamura, J.N. Kondo, S. Hayashi, K. Domen and M. Hara: Nature, Vol. 438 (2005) No.7065,p.178

DOI: 10.1038/438178a

Google Scholar

[15] S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi and M. Hara: Journal of the American Chemical Society, Vol. 130 (2008) No.38,p.12787

Google Scholar

[16] M. Kitano, D. Yamaguchi, S. Suganuma, K. Nakajima, H. Kato, S. Hayashi and M. Hara: Langmuir, Vol. 25 (2009) No.9,p.5068

Google Scholar

[17] M. Hara: Energy & Environmental Science, Vol. 3 (2010),p.601

Google Scholar

[18] D. Yamaguchi, M. Kitano, S. Suganuma, K. Nakajima, H. Kato and M. Hara: Journal of Physical Chemistry C, Vol. 113 (2009) No.8,p.3181

Google Scholar

[19] A. Onda, T. Ochi, K. Yanagisawa: Green Chemistry, Vol. 10 (2008) No.10,p.1033

Google Scholar

[20] A. Onda, T. Ochi, K. Yanagisawa: Topics in Catalysis, Vol. 52 (2009),p.801

Google Scholar

[21] J.F. Pang, A.Q. Wang, M.Y. Zheng, T. Zhang: Chemical Communications, Vol. 46 (2010),p.6935

Google Scholar

[22] Y.Y. Wu, Z.H. Fu, D.L. Yin, Q. Xu, F.L. Liu C.L. Lu and L.Q. Mao: Green Chemistry, Vol. 12 (2010) No.4,p.696

Google Scholar

[23] S.V. Vyver, L.Peng, J.Geboers, H.Schepers, F. Clippel, C.J. Gommes, B. Goderis, P.A. Jacobs, and B.F. Sels: Green Chemistry, Vol. 12 (2010),p.1560

DOI: 10.1039/c0gc00235f

Google Scholar

[24] Y.J. Jiang, X.T. Li, Q.A. Cao and X.D. Mu: J Nanopart Res, Vol. 13 (2011) No.2,p.463

Google Scholar

[25] H.Y. Wang, C.B. Zhang, H. He and L.A. Wang: Acta Phys. -Chim. Sin.,Vol. 26 (2010) No.7,p.1873

Google Scholar

[26] D.M. Lai, L. Deng, J.A. Li, B. Liao, Q.X. Guo and Y. Fu: ChemSusChem, Vol. 4 (2011) No.1,p.55

Google Scholar

[27] H. Kobayashi, T. Komanoya, K. Hara and A. Fukuoka: ChemSusChem, Vol. 3 (2010),p.440

Google Scholar

[28] R.P. Swatloski, S.K. Spear; J.D. Holbery and R.D. Rogers: J. Am. Chem. Soc., Vol. 124 (2002),p.4974

Google Scholar

[29] C. Li and Z.K. Zhao: Adv.Synth.Catal., Vol. 349 (2007),p.1847

Google Scholar

[30] C. Li, Q. Wang and Z.K. Zhao: Green Chem, Vol. 2 (2008),p.177

Google Scholar

[31] C. Sievers, M.V. Olarte, T. Marzialetti, I. Musin, P.K. Agrawal and C.W. Jones: Ind.Eng.Chem, Vol. 48 (2009),p.1277

DOI: 10.1021/ie801174x

Google Scholar

[32] R. Rinaldi, R. Palkovits and F. Schth: Angewandte Chemie International Edition, Vol. 47 (2008), p.8047

Google Scholar

[33] Z. Zhang and Z.K. Zhao: Carbohydrate Research, Vol. 344 (2009),p. (2069)

Google Scholar

[34] H. Watanabe: Carbohydrate Polymers, Vol. 80 (2010),p.1168

Google Scholar